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Probability and counting

Luck. Coincidence. Randomness. Uncertainty. Risk. Doubt. Fortune. Chance.
You’ve probably heard these words countless times, but chances are that they were
used in a vague, casual way. Unfortunately, despite its ubiquity in science and ev-
eryday life, probability can be deeply counterintuitive. If we rely on intuitions of
doubtful validity, we run a serious risk of making inaccurate predictions or over-
confident decisions. The goal of this book is to introduce probability as a logical
framework for quantifying uncertainty and randomness in a principled way. We’ll
also aim to strengthen intuition, both when our initial guesses coincide with logical
reasoning and when we’re not so lucky.

1.1 Why study probability?

Mathematics is the logic of certainty; probability is the logic of uncertainty. Prob-
ability is extremely useful in a wide variety of fields, since it provides tools for
understanding and explaining variation, separating signal from noise, and modeling
complex phenomena. To give just a small sample from a continually growing list of
applications:

1. Statistics: Probability is the foundation and language for statistics, en-
abling many powerful methods for using data to learn about the world.

2. Physics: Einstein famously said “God does not play dice with the uni-
verse”, but current understanding of quantum physics heavily involves
probability at the most fundamental level of nature. Statistical mechanics
is another major branch of physics that is built on probability.

3. Biology : Genetics is deeply intertwined with probability, both in the in-
heritance of genes and in modeling random mutations.

4. Computer science: Randomized algorithms make random choices while
they are run, and in many important applications they are simpler and
more efficient than any currently known deterministic alternatives. Proba-
bility also plays an essential role in studying the performance of algorithms,
and in machine learning and artificial intelligence.

1
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5. Meteorology : Weather forecasts are (or should be) computed and expressed
in terms of probability.

6. Gambling : Many of the earliest investigations of probability were aimed
at answering questions about gambling and games of chance.

7. Finance: At the risk of redundancy with the previous example, it should
be pointed out that probability is central in quantitative finance. Modeling
stock prices over time and determining “fair” prices for financial instru-
ments are based heavily on probability.

8. Political science: In recent years, political science has become more and
more quantitative and statistical. For example, Nate Silver’s successes in
predicting election results, such as in the 2008 and 2012 U.S. presidential
elections, were achieved using probability models to make sense of polls
and to drive simulations (see Silver [25]).

9. Medicine: The development of randomized clinical trials, in which patients
are randomly assigned to receive treatment or placebo, has transformed
medical research in recent years. As the biostatistician David Harrington
remarked, “Some have conjectured that it could be the most significant
advance in scientific medicine in the twentieth century. . . . In one of the
delightful ironies of modern science, the randomized trial ‘adjusts’ for both
observed and unobserved heterogeneity in a controlled experiment by in-
troducing chance variation into the study design.” [17]

10. Life: Life is uncertain, and probability is the logic of uncertainty. While it
isn’t practical to carry out a formal probability calculation for every deci-
sion made in life, thinking hard about probability can help us avert some
common fallacies, shed light on coincidences, and make better predictions.

Probability provides procedures for principled problem-solving, but it can also pro-
duce pitfalls and paradoxes. For example, we’ll see in this chapter that even Got-
tfried Wilhelm von Leibniz and Sir Isaac Newton, the two people who independently
discovered calculus in the 17th century, were not immune to basic errors in prob-
ability. Throughout this book, we will use the following strategies to help avoid
potential pitfalls.

1. Simulation: A beautiful aspect of probability is that it is often possible to
study problems via simulation. Rather than endlessly debating an answer
with someone who disagrees with you, you can run a simulation and see
empirically who is right. Each chapter in this book ends with a section
that gives examples of how to do calculations and simulations in R, a free
statistical computing environment.

2. Biohazards: Studying common mistakes is important for gaining a stronger
understanding of what is and is not valid reasoning in probability. In this
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book, common mistakes are called biohazards and are denoted by h (since
making such mistakes can be hazardous to one’s health!).

3. Sanity checks: After solving a problem one way, we will often try to solve
the same problem in a different way or to examine whether our answer
makes sense in simple and extreme cases.

1.2 Sample spaces and Pebble World

The mathematical framework for probability is built around sets. Imagine that an
experiment is performed, resulting in one out of a set of possible outcomes. Before
the experiment is performed, it is unknown which outcome will be the result; after,
the result “crystallizes” into the actual outcome.

Definition 1.2.1 (Sample space and event). The sample space S of an experiment
is the set of all possible outcomes of the experiment. An event A is a subset of the
sample space S, and we say that A occurred if the actual outcome is in A.

B

A

FIGURE 1.1

A sample space as Pebble World, with two events A and B spotlighted.

The sample space of an experiment can be finite, countably infinite, or uncountably
infinite (see Section A.1.5 of the math appendix for an explanation of countable and
uncountable sets). When the sample space is finite, we can visualize it as Pebble
World , as shown in Figure 1.1. Each pebble represents an outcome, and an event is
a set of pebbles.

Performing the experiment amounts to randomly selecting one pebble. If all the
pebbles are of the same mass, all the pebbles are equally likely to be chosen. This
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special case is the topic of the next two sections. In Section 1.6, we give a general
definition of probability that allows the pebbles to differ in mass.

Set theory is very useful in probability, since it provides a rich language for express-
ing and working with events; Section A.1 of the math appendix provides a review of
set theory. Set operations, especially unions, intersections, and complements, make
it easy to build new events in terms of already-defined events. These concepts also
let us express an event in more than one way; often, one expression for an event is
much easier to work with than another expression for the same event.

For example, let S be the sample space of an experiment and let A,B ⊆ S be events.
Then the union A ∪ B is the event that occurs if and only if at least one of A and
B occurs, the intersection A ∩B is the event that occurs if and only if both A and
B occur, and the complement Ac is the event that occurs if and only if A does not
occur. We also have De Morgan’s laws:

(A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc,

since saying that it is not the case that at least one of A and B occur is the same
as saying that A does not occur and B does not occur, and saying that it is not
the case that both occur is the same as saying that at least one does not occur.
Analogous results hold for unions and intersections of more than two events.

In the example shown in Figure 1.1, A is a set of 5 pebbles, B is a set of 4 pebbles,
A ∪ B consists of the 8 pebbles in A or B (including the pebble that is in both),
A ∩ B consists of the pebble that is in both A and B, and Ac consists of the 4
pebbles that are not in A.

The notion of sample space is very general and abstract, so it is important to have
some concrete examples in mind.

Example 1.2.2 (Coin flips). A coin is flipped 10 times. Writing Heads as H and
Tails as T , a possible outcome (pebble) is HHHTHHTTHT , and the sample space
is the set of all possible strings of length 10 of H’s and T ’s. We can (and will) encode
H as 1 and T as 0, so that an outcome is a sequence (s1, . . . , s10) with sj ∈ {0, 1},
and the sample space is the set of all such sequences. Now let’s look at some events:

1. Let A1 be the event that the first flip is Heads. As a set,

A1 = {(1, s2, . . . , s10) : sj ∈ {0, 1} for 2 ≤ j ≤ 10}.

This is a subset of the sample space, so it is indeed an event; saying that A1 occurs
is the same thing as saying that the first flip is Heads. Similarly, let Aj be the event
that the jth flip is Heads for j = 2, 3, . . . , 10.

2. Let B be the event that at least one flip was Heads. As a set,

B =

10⋃
j=1

Aj .
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3. Let C be the event that all the flips were Heads. As a set,

C =

10⋂
j=1

Aj .

4. Let D be the event that there were at least two consecutive Heads. As a set,

D =

9⋃
j=1

(Aj ∩Aj+1).

�

Example 1.2.3 (Pick a card, any card). Pick a card from a standard deck of 52
cards. The sample space S is the set of all 52 cards (so there are 52 pebbles, one for
each card). Consider the following four events:

• A: card is an ace.

• B: card has a black suit.

• D: card is a diamond.

• H: card is a heart.

As a set, H consists of 13 cards:

{Ace of Hearts, Two of Hearts, . . . , King of Hearts}.

We can create various other events in terms of A,B,D,H. For example, A ∩
H is the event that the card is the Ace of Hearts, A ∩ B is the event
{Ace of Spades, Ace of Clubs}, and A ∪ D ∪ H is the event that the card is red
or an ace. Also, note that (D∪H)c = Dc∩Hc = B, so B can be expressed in terms
of D and H. On the other hand, the event that the card is a spade can’t be written
in terms of A,B,D,H since none of them are fine-grained enough to be able to
distinguish between spades and clubs.

There are many other events that could be defined using this sample space. In
fact, the counting methods introduced later in this chapter show that there are
252 ≈ 4.5× 1015 events in this problem, even though there are only 52 pebbles.

What if the card drawn were a joker? That would indicate that we had the wrong
sample space; we are assuming that the outcome of the experiment is guaranteed
to be an element of S. �

As the preceding examples demonstrate, events can be described in English or in
set notation. Sometimes the English description is easier to interpret while the
set notation is easier to manipulate. Let S be a sample space and sactual be the
actual outcome of the experiment (the pebble that ends up getting chosen when the
experiment is performed). A mini-dictionary for converting between English and
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sets is shown below. For example, for events A and B, the English statement “A
implies B” says that whenever the event A occurs, the event B also occurs; in terms
of sets, this translates into saying that A is a subset of B.

English Sets

Events and occurrences

sample space S

s is a possible outcome s ∈ S
A is an event A ⊆ S
A occurred sactual ∈ A
something must happen sactual ∈ S

New events from old events

A or B (inclusive) A ∪B
A and B A ∩B
not A Ac

A or B, but not both (A ∩Bc) ∪ (Ac ∩B)

at least one of A1, . . . , An A1 ∪ · · · ∪An
all of A1, . . . , An A1 ∩ · · · ∩An

Relationships between events

A implies B A ⊆ B
A and B are mutually exclusive A ∩B = ∅
A1, . . . , An are a partition of S A1 ∪ · · · ∪An = S,Ai ∩Aj = ∅ for i 6= j

1.3 Naive definition of probability

Historically, the earliest definition of the probability of an event was to count the
number of ways the event could happen and divide by the total number of possible
outcomes for the experiment. We call this the naive definition since it is restrictive
and relies on strong assumptions; nevertheless, it is important to understand, and
useful when not misused.

Definition 1.3.1 (Naive definition of probability). Let A be an event for an exper-
iment with a finite sample space S. The naive probability of A is

Pnaive(A) =
|A|
|S|

=
number of outcomes favorable to A

total number of outcomes in S
.

(We use |A| to denote the size of A; see Section A.1.5 of the math appendix.)
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In terms of Pebble World, the naive definition just says that the probability of A is
the fraction of pebbles that are in A. For example, in Figure 1.1 it says

Pnaive(A) =
5

9
, Pnaive(B) =

4

9
, Pnaive(A ∪B) =

8

9
, Pnaive(A ∩B) =

1

9
.

For the complements of the events just considered,

Pnaive(A
c) =

4

9
, Pnaive(B

c) =
5

9
, Pnaive((A ∪B)c) =

1

9
, Pnaive((A ∩B)c) =

8

9
.

In general,

Pnaive(A
c) =

|Ac|
|S|

=
|S| − |A|
|S|

= 1− |A|
|S|

= 1− Pnaive(A).

In Section 1.6, we will see that this result about complements always holds for
probability, even when we go beyond the naive definition. A good strategy when
trying to find the probability of an event is to start by thinking about whether it will
be easier to find the probability of the event or the probability of its complement.
De Morgan’s laws are especially useful in this context, since it may be easier to
work with an intersection than a union, or vice versa.

The naive definition is very restrictive in that it requires S to be finite, with equal
mass for each pebble. It has often been misapplied by people who assume equally
likely outcomes without justification and make arguments to the effect of “either
it will happen or it won’t, and we don’t know which, so it’s 50-50”. In addition to
sometimes giving absurd probabilities, this type of reasoning isn’t even internally
consistent. For example, it would say that the probability of life on Mars is 1/2
(“either there is or there isn’t life there”), but it would also say that the probability
of intelligent life on Mars is 1/2, and it is clear intuitively—and by the properties
of probability developed in Section 1.6—that the latter should have strictly lower
probability than the former. But there are several important types of problems
where the naive definition is applicable:

• when there is symmetry in the problem that makes outcomes equally likely. It is
common to assume that a coin has a 50% chance of landing Heads when tossed,
due to the physical symmetry of the coin.1 For a standard, well-shuffled deck of
cards, it is reasonable to assume that all orders are equally likely. There aren’t
certain overeager cards that especially like to be near the top of the deck; any
particular location in the deck is equally likely to house any of the 52 cards.

• when the outcomes are equally likely by design. For example, consider conducting
a survey of n people in a population of N people. A common goal is to obtain a

1See Diaconis, Holmes, and Montgomery [8] for a physical argument that the chance of a tossed
coin coming up the way it started is about 0.51 (close to but slightly more than 1/2), and Gelman
and Nolan [12] for an explanation of why the probability of Heads is close to 1/2 even for a coin
that is manufactured to have different weights on the two sides (for standard coin-tossing; allowing
the coin to spin is a different matter).
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simple random sample, which means that the n people are chosen randomly with
all subsets of size n being equally likely. If successful, this ensures that the naive
definition is applicable, but in practice this may be hard to accomplish because
of various complications, such as not having a complete, accurate list of contact
information for everyone in the population.

• when the naive definition serves as a useful null model. In this setting, we assume
that the naive definition applies just to see what predictions it would yield, and
then we can compare observed data with predicted values to assess whether the
hypothesis of equally likely outcomes is tenable.

1.4 How to count

Calculating the naive probability of an event A involves counting the number of
pebbles in A and the number of pebbles in the sample space S. Often the sets
we need to count are extremely large. This section introduces some fundamental
methods for counting; further methods can be found in books on combinatorics, the
branch of mathematics that studies counting.

1.4.1 Multiplication rule

In some problems, we can directly count the number of possibilities using a basic but
versatile principle called the multiplication rule. We’ll see that the multiplication rule
leads naturally to counting rules for sampling with replacement and sampling without
replacement, two scenarios that often arise in probability and statistics.

Theorem 1.4.1 (Multiplication rule). Consider a compound experiment consisting
of two sub-experiments, Experiment A and Experiment B. Suppose that Experiment
A has a possible outcomes, and for each of those outcomes Experiment B has b
possible outcomes. Then the compound experiment has ab possible outcomes.

To see why the multiplication rule is true, imagine a tree diagram as in Figure 1.2.
Let the tree branch a ways according to the possibilities for Experiment A, and for
each of those branches create b further branches for Experiment B. Overall, there
are b+ b+ · · ·+ b︸ ︷︷ ︸

a

= ab possibilities.

h 1.4.2. It is often easier to think about the experiments as being in chronological
order, but there is no requirement in the multiplication rule that Experiment A has
to be performed before Experiment B.

Example 1.4.3 (Ice cream cones). Suppose you are buying an ice cream cone.
You can choose whether to have a cake cone or a waffle cone, and whether to
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FIGURE 1.2

Tree diagram illustrating the multiplication rule. If Experiment A has 3 possible
outcomes and Experiment B has 4 possible outcomes, then overall there are 3·4 = 12
possible outcomes.

have chocolate, vanilla, or strawberry as your flavor. This decision process can be
visualized with a tree diagram, as in Figure 1.3.

By the multiplication rule, there are 2 · 3 = 6 possibilities. This is a very simple
example, but is worth thinking through in detail as a foundation for thinking about
and visualizing more complicated examples. Soon we will encounter examples where
drawing the tree in a legible size would take up more space than exists in the known
universe, yet where conceptually we can still think in terms of the ice cream example.
Some things to note:

1. It doesn’t matter whether you choose the type of cone first (“I’d like a waffle
cone with chocolate ice cream”) or the flavor first (“I’d like chocolate ice cream on
a waffle cone”). Either way, there are 2 · 3 = 3 · 2 = 6 possibilities.

2. It doesn’t matter whether the same flavors are available on a cake cone as on a
waffle cone. What matters is that there are exactly 3 flavor choices for each cone
choice. If for some strange reason it were forbidden to have chocolate ice cream on a
waffle cone, with no substitute flavor available (aside from vanilla and strawberry),
there would be 3 + 2 = 5 possibilities and the multiplication rule wouldn’t apply. In
larger examples, such complications could make counting the number of possibilities
vastly more difficult.

Now suppose you buy two ice cream cones on a certain day, one in the afternoon
and the other in the evening. Write, for example, (cakeC, waffleV) to mean a cake
cone with chocolate in the afternoon, followed by a waffle cone with vanilla in the
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FIGURE 1.3

Tree diagram for choosing an ice cream cone. Regardless of whether the type of
cone or the flavor is chosen first, there are 2 · 3 = 3 · 2 = 6 possibilities.

evening. By the multiplication rule, there are 62 = 36 possibilities in your delicious
compound experiment.

But what if you’re only interested in what kinds of ice cream cones you had that
day, not the order in which you had them, so you don’t want to distinguish, for
example, between (cakeC, waffleV) and (waffleV, cakeC)? Are there now 36/2 = 18
possibilities? No, since possibilities like (cakeC, cakeC) were already only listed once
each. There are 6 · 5 = 30 ordered possibilities (x, y) with x 6= y, which turn into 15
possibilities if we treat (x, y) as equivalent to (y, x), plus 6 possibilities of the form
(x, x), giving a total of 21 possibilities. Note that if the 36 original ordered pairs
(x, y) are equally likely, then the 21 possibilities here are not equally likely. �

Example 1.4.4 (Subsets). A set with n elements has 2n subsets, including the
empty set ∅ and the set itself. This follows from the multiplication rule since for
each element, we can choose whether to include it or exclude it. For example, the set
{1, 2, 3} has the 8 subsets ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. This result
explains why in Example 1.2.3 there are 252 ≈ 4.5×1015 events that can be defined.

�

We can use the multiplication rule to arrive at formulas for sampling with and with-
out replacement. Many experiments in probability and statistics can be interpreted
in one of these two contexts, so it is appealing that both formulas follow directly
from the same basic counting principle.

Theorem 1.4.5 (Sampling with replacement). Consider n objects and making k
choices from them, one at a time with replacement (i.e., choosing a certain object
does not preclude it from being chosen again). Then there are nk possible outcomes.

For example, imagine a jar with n balls, labeled from 1 to n. We sample balls one
at a time with replacement, meaning that each time a ball is chosen, it is returned
to the jar. Each sampled ball is a sub-experiment with n possible outcomes, and
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there are k sub-experiments. Thus, by the multiplication rule there are nk ways to
obtain a sample of size k.

Theorem 1.4.6 (Sampling without replacement). Consider n objects and making
k choices from them, one at a time without replacement (i.e., choosing a certain
object precludes it from being chosen again). Then there are n(n− 1) · · · (n−k+ 1)
possible outcomes, for k ≤ n (and 0 possibilities for k > n).

This result also follows directly from the multiplication rule: each sampled ball is
again a sub-experiment, and the number of possible outcomes decreases by 1 each
time. Note that for sampling k out of n objects without replacement, we need k ≤ n,
whereas in sampling with replacement the objects are inexhaustible.

Example 1.4.7 (Permutations and factorials). A permutation of 1, 2, . . . , n is an
arrangement of them in some order, e.g., 3, 5, 1, 2, 4 is a permutation of 1, 2, 3, 4, 5.
By Theorem 1.4.6 with k = n, there are n! permutations of 1, 2, . . . , n. For example,
there are n! ways in which n people can line up for ice cream. (Recall that n! =
n(n− 1)(n− 2) · · · 1 for any positive integer n, and 0! = 1.) �

Theorems 1.4.5 and 1.4.6 are theorems about counting, but when the naive def-
inition applies, we can use them to calculate probabilities. This brings us to our
next example, a famous problem in probability called the birthday problem. The
solution incorporates both sampling with replacement and sampling without re-
placement.

Example 1.4.8 (Birthday problem). There are k people in a room. Assume each
person’s birthday is equally likely to be any of the 365 days of the year (we exclude
February 29), and that people’s birthdays are independent (we assume there are no
twins in the room). What is the probability that two or more people in the group
have the same birthday?

Solution:

There are 365k ways to assign birthdays to the people in the room, since we can
imagine the 365 days of the year being sampled k times, with replacement. By
assumption, all of these possibilities are equally likely, so the naive definition of
probability applies.

Used directly, the naive definition says we just need to count the number of ways
to assign birthdays to k people such that there are two or more people who share a
birthday. But this counting problem is hard, since it could be Emma and Steve who
share a birthday, or Steve and Naomi, or all three of them, or the three of them
could share a birthday while two others in the group share a different birthday, or
various other possibilities.

Instead, let’s count the complement: the number of ways to assign birthdays to
k people such that no two people share a birthday. This amounts to sampling
the 365 days of the year without replacement, so the number of possibilities is
365 · 364 · 363 · · · (365− k+ 1) for k ≤ 365. Therefore the probability of no birthday
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matches in a group of k people is

P (no birthday match) =
365 · 364 · · · (365− k + 1)

365k
,

and the probability of at least one birthday match is

P (at least 1 birthday match) = 1− 365 · 364 · · · (365− k + 1)

365k
.

Figure 1.4 plots the probability of at least one birthday match as a function of k.
The first value of k for which the probability of a match exceeds 0.5 is k = 23.
Thus, in a group of 23 people, there is a better than 50% chance that two or more
of them will have the same birthday. By the time we reach k = 57, the probability
of a match exceeds 99%.
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FIGURE 1.4

Probability that in a room of k people, at least two were born on the same day.
This probability first exceeds 0.5 when k = 23.

Of course, for k = 366 we are guaranteed to have a match, but it’s surprising that
even with a much smaller number of people it’s overwhelmingly likely that there
is a birthday match. For a quick intuition into why it should not be so surprising,
note that with 23 people there are

(
23
2

)
= 253 pairs of people, any of which could

be a birthday match.

The birthday problem is much more than a fun party game, and much more than
a way to build intuition about coincidences; there are also important applications
in statistics and computer science. One of the exercises explores the more general
setting in which the probability is not necessarily 1/365 for each day. It turns out
that in the non-equal probability case, having at least one match becomes even more
likely. �

h 1.4.9 (Labeling objects). Drawing a sample from a population is a very fun-
damental concept in statistics. It is important to think of the objects or people in
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the population as named or labeled. For example, if there are n balls in a jar, we
can imagine that they have labels from 1 to n, even if the balls look the same to
the human eye. In the birthday problem, we can give each person an ID (identifi-
cation) number, rather than thinking of the people as indistinguishable particles or
a faceless mob.

A related example is an instructive blunder made by Leibniz in a seemingly simple
problem (see Gorroochurn [15] for discussion of this and a variety of other proba-
bility problems from a historical perspective).

Example 1.4.10 (Leibniz’s mistake). If we roll two fair dice, which is more likely:
a sum of 11 or a sum of 12?

Solution:

Label the dice A and B, and consider each die to be a sub-experiment. By the
multiplication rule, there are 36 possible outcomes for ordered pairs of the form
(value of A, value of B), and they are equally likely by symmetry. Of these, (5, 6)
and (6, 5) are favorable to a sum of 11, while only (6, 6) is favorable to a sum of 12.
Therefore a sum of 11 is twice as likely as a sum of 12; the probability is 1/18 for
the former, and 1/36 for the latter.

However, Leibniz wrongly argued that a sum of 11 and a sum of 12 are equally
likely. He claimed that “it is equally likely to throw twelve points, than to throw
eleven; because one or the other can be done in only one manner”. Here Leibniz was
making the mistake of treating the two dice as indistinguishable objects, viewing
(5, 6) and (6, 5) as the same outcome.

What are the antidotes to Leibniz’s mistake? First, as explained in h 1.4.9, we
should label the objects in question instead of treating them as indistinguishable.
If Leibniz had labeled his dice A and B, or green and orange, or left and right, he
would not have made this mistake. Second, before we use counting for probability, we
should ask ourselves whether the naive definition applies (see h 1.4.21 for another
example showing that caution is needed before applying the naive definition). �

1.4.2 Adjusting for overcounting

In many counting problems, it is not easy to directly count each possibility once
and only once. If, however, we are able to count each possibility exactly c times
for some c, then we can adjust by dividing by c. For example, if we have exactly
double-counted each possibility, we can divide by 2 to get the correct count. We call
this adjusting for overcounting.

Example 1.4.11 (Committees and teams). Consider a group of four people.

(a) How many ways are there to choose a two-person committee?

(b) How many ways are there to break the people into two teams of two?
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Solution:

(a) One way to count the possibilities is by listing them out: labeling the people as
1, 2, 3, 4, the possibilities are 12 , 13 , 14 , 23 , 24 , 34 .

Another approach is to use the multiplication rule with an adjustment for over-
counting. By the multiplication rule, there are 4 ways to choose the first person on
the committee and 3 ways to choose the second person on the committee, but this
counts each possibility twice, since picking 1 and 2 to be on the committee is the
same as picking 2 and 1 to be on the committee. Since we have overcounted by a
factor of 2, the number of possibilities is (4 · 3)/2 = 6.

(b) Here are 3 ways to see that there are 3 ways to form the teams. Labeling the
people as 1, 2, 3, 4, we can directly list out the possibilities: 12 34 , 13 24 , and

14 23 . Listing out all possibilities would quickly become tedious or infeasible with
more people though. Another approach is to note that it suffices to specify person
1’s teammate (and then the other team is determined). A third way is to use (a)
to see that there are 6 ways to choose one team. This overcounts by a factor of 2,
since picking 1 and 2 to be a team is equivalent to picking 3 and 4 to be a team. So
again the answer is 6/2 = 3. �

A binomial coefficient counts the number of subsets of a certain size for a set, such
as the number of ways to choose a committee of size k from a set of n people. Sets
and subsets are by definition unordered, e.g., {3, 1, 4} = {4, 1, 3}, so we are counting
the number of ways to choose k objects out of n, without replacement and without
distinguishing between the different orders in which they could be chosen.

Definition 1.4.12 (Binomial coefficient). For any nonnegative integers k and n,
the binomial coefficient

(
n
k

)
, read as “n choose k”, is the number of subsets of size

k for a set of size n.

For example,
(

4
2

)
= 6, as shown in Example 1.4.11. The binomial coefficient

(
n
k

)
is sometimes called a combination, but we do not use that terminology here since
“combination” is such a useful general-purpose word. Algebraically, binomial coef-
ficients can be computed as follows.

Theorem 1.4.13 (Binomial coefficient formula). For k ≤ n, we have(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
=

n!

(n− k)!k!
.

For k > n, we have
(
n
k

)
= 0.

Proof. Let A be a set with |A| = n. Any subset of A has size at most n, so
(
n
k

)
= 0

for k > n. Now let k ≤ n. By Theorem 1.4.6, there are n(n − 1) · · · (n − k + 1)
ways to make an ordered choice of k elements without replacement. This overcounts
each subset of interest by a factor of k! (since we don’t care how these elements are
ordered), so we can get the correct count by dividing by k!. �
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h 1.4.14. The binomial coefficient
(
n
k

)
is often defined in terms of factorials, but

keep in mind that
(
n
k

)
is 0 if k > n, even though the factorial of a negative number

is undefined. Also, the middle expression in Theorem 1.4.13 is often better for
computation than the expression with factorials, since factorials grow extremely
fast. For example, (

100

2

)
=

100 · 99

2
= 4950

can even be done by hand, whereas computing
(

100
2

)
= 100!/(98!·2!) by first calculat-

ing 100! and 98! would be wasteful and possibly dangerous because of the extremely
large numbers involved (100! ≈ 9.33× 10157).

Example 1.4.15 (Club officers). In a club with n people, there are n(n−1)(n−2)
ways to choose a president, vice president, and treasurer, and there are

(
n
3

)
=

n(n−1)(n−2)
3! ways to choose 3 officers without predetermined titles. �

Example 1.4.16 (Permutations of a word). How many ways are there to permute
the letters in the word LALALAAA? To determine a permutation, we just need to
choose where the 5 A’s go (or, equivalently, just decide where the 3 L’s go). So there
are (

8

5

)
=

(
8

3

)
=

8 · 7 · 6
3!

= 56 permutations.

How many ways are there to permute the letters in the word STATISTICS? Here
are two approaches. We could choose where to put the S’s, then where to put the
T’s (from the remaining positions), then where to put the I’s, then where to put
the A (and then the C is determined). Alternatively, we can start with 10! and then
adjust for overcounting, dividing by 3!3!2! to account for the fact that the S’s can
be permuted among themselves in any way, and likewise for the T’s and I’s. This
gives (

10

3

)(
7

3

)(
4

2

)(
2

1

)
=

10!

3!3!2!
= 50400 possibilities.

�

Example 1.4.17 (Binomial theorem). The binomial theorem states that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

To prove the binomial theorem, expand out the product

(x+ y)(x+ y) . . . (x+ y)︸ ︷︷ ︸
n factors

.

Just as (a+ b)(c+ d) = ac+ ad+ bc+ bd is the sum of terms where we pick the a or
the b from the first factor (but not both) and the c or the d from the second factor
(but not both), the terms of (x+ y)n are obtained by picking either the x or the y
(but not both) from each factor. There are

(
n
k

)
ways to choose exactly k of the x’s,

and each such choice yields the term xkyn−k. The binomial theorem follows. �
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We can use binomial coefficients to calculate probabilities in many problems for
which the naive definition applies.

Example 1.4.18 (Full house in poker). A 5-card hand is dealt from a standard,
well-shuffled 52-card deck. The hand is called a full house in poker if it consists of
three cards of some rank and two cards of another rank, e.g., three 7’s and two 10’s
(in any order). What is the probability of a full house?

Solution:

All of the
(

52
5

)
possible hands are equally likely by symmetry, so the naive definition

is applicable. To find the number of full house hands, use the multiplication rule
(and imagine the tree). There are 13 choices for what rank we have three of; for
concreteness, assume we have three 7’s and focus on that branch of the tree. There
are

(
4
3

)
ways to choose which 7’s we have. Then there are 12 choices for what rank

we have two of, say 10’s for concreteness, and
(

4
2

)
ways to choose two 10’s. Thus,

P (full house) =
13
(

4
3

)
12
(

4
2

)(
52
5

) =
3744

2598960
≈ 0.00144.

The decimal approximation is more useful when playing poker, but the answer in
terms of binomial coefficients is exact and self-annotating (seeing “

(
52
5

)
” is a much

bigger hint of its origin than seeing “2598960”). �

Example 1.4.19 (Newton-Pepys problem). Isaac Newton was consulted about
the following problem by Samuel Pepys, who wanted the information for gambling
purposes. Which of the following events has the highest probability?

A: At least one 6 appears when 6 fair dice are rolled.

B: At least two 6’s appear when 12 fair dice are rolled.

C: At least three 6’s appear when 18 fair dice are rolled.

Solution:

The three experiments have 66, 612, and 618 possible outcomes, respectively, and by
symmetry the naive definition applies in all three experiments.

A: Instead of counting the number of ways to obtain at least one 6, it is easier to
count the number of ways to get no 6’s. Getting no 6’s is equivalent to sampling the
numbers 1 through 5 with replacement 6 times, so 56 outcomes are favorable to Ac

(and 66 − 56 are favorable to A). Thus

P (A) = 1− 56

66
≈ 0.67.

B: Again we count the outcomes in Bc first. There are 512 ways to get no 6’s in
12 die rolls. There are

(
12
1

)
511 ways to get exactly one 6: we first choose which die
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lands 6, then sample the numbers 1 through 5 with replacement for the other 11
dice. Adding these, we get the number of ways to fail to obtain at least two 6’s.
Then

P (B) = 1−
512 +

(
12
1

)
511

612
≈ 0.62.

C: We count the outcomes in Cc, i.e., the number of ways to get zero, one, or two
6’s in 18 die rolls. There are 518 ways to get no 6’s,

(
18
1

)
517 ways to get exactly one

6, and
(

18
2

)
516 ways to get exactly two 6’s (choose which two dice will land 6, then

decide how the other 16 dice will land).

P (C) = 1−
518 +

(
18
1

)
517 +

(
18
2

)
516

618
≈ 0.60.

Therefore A has the highest probability.

Newton arrived at the correct answer using similar calculations. Newton also pro-
vided Pepys with an intuitive argument for why A was the most likely of the three;
however, his intuition was invalid. As explained in Stigler [27], using loaded dice
could result in a different ordering of A,B,C, but Newton’s intuitive argument did
not depend on the dice being fair. �

In this book, we care about counting not for its own sake, but because it sometimes
helps us to find probabilities. Here is an example of a neat but treacherous counting
problem; the solution is elegant, but it is rare that the result can be used with the
naive definition of probability.

Example 1.4.20 (Bose-Einstein). How many ways are there to choose k times from
a set of n objects with replacement, if order doesn’t matter (we only care about
how many times each object was chosen, not the order in which they were chosen)?

Solution:

When order does matter, the answer is nk by the multiplication rule, but this
problem is much harder. We will solve it by solving an isomorphic problem (the
same problem in a different guise).

Let us find the number of ways to put k indistinguishable particles into n distin-
guishable boxes. That is, swapping the particles in any way is not considered a
separate possibility: all that matters are the counts for how many particles are in
each box. Any configuration can be encoded as a sequence of |’s and l’s in a natural
way, as illustrated in Figure 1.5.

To be valid, a sequence must start and end with a |, with exactly n−1 |’s and k l’s
in between; conversely, any such sequence is a valid encoding for some configuration
of particles in boxes. Thus there are n + k − 1 slots between the two outer walls,
and we need only choose where to put the k l’s, so the number of possibilities is(
n+k−1

k

)
. This is known as the Bose-Einstein value, since the physicists Satyendra

Nath Bose and Albert Einstein studied related problems about indistinguishable
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FIGURE 1.5

Bose-Einstein encoding: putting k = 7 indistinguishable particles into n = 4 distin-
guishable boxes can be expressed as a sequence of |’s and l’s, where | denotes a
wall and l denotes a particle.

particles in the 1920s, using their ideas to successfully predict the existence of a
strange state of matter known as a Bose-Einstein condensate.

To relate this back to the original question, we can let each box correspond to one
of the n objects and use the particles as “check marks” to tally how many times
each object is selected. For example, if a certain box contains exactly 3 particles,
that means the object corresponding to that box was chosen exactly 3 times. The
particles being indistinguishable corresponds to the fact that we don’t care about
the order in which the objects are chosen. Thus, the answer to the original question
is also

(
n+k−1

k

)
.

Another isomorphic problem is to count the number of solutions (x1, . . . , xn) to the
equation x1 + x2 + · · · + xn = k, where the xi are nonnegative integers. This is
equivalent since we can think of xi as the number of particles in the ith box.

h 1.4.21. The Bose-Einstein result should not be used in the naive definition of
probability except in very special circumstances. For example, consider a survey
where a sample of size k is collected by choosing people from a population of size n
one at a time, with replacement and with equal probabilities. Then the nk ordered
samples are equally likely, making the naive definition applicable, but the

(
n+k−1

k

)
unordered samples (where all that matters is how many times each person was
sampled) are not equally likely.

As another example, with n = 365 days in a year and k people, how many possible
unordered birthday lists are there? For example, for k = 3, we want to count lists
like (May 1, March 31, April 11), where all permutations are considered equivalent.
We can’t do a simple adjustment for overcounting such as nk/3! since, e.g., there are
6 permutations of (May 1, March 31, April 11) but only 3 permutations of (March
31, March 31, April 11). By Bose-Einstein, the number of lists is

(
n+k−1

k

)
. But the

ordered birthday lists are equally likely, not the unordered lists, so the Bose-Einstein
value should not be used in calculating birthday probabilities.

�
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1.5 Story proofs

A story proof is a proof by interpretation. For counting problems, this often means
counting the same thing in two different ways, rather than doing tedious algebra. A
story proof often avoids messy calculations and goes further than an algebraic proof
toward explaining why the result is true. The word “story” has several meanings,
some more mathematical than others, but a story proof (in the sense in which we’re
using the term) is a fully valid mathematical proof. Here are some examples of story
proofs, which also serve as further examples of counting.

Example 1.5.1 (Choosing the complement). For any nonnegative integers n and
k with k ≤ n, we have (

n

k

)
=

(
n

n− k

)
.

This is easy to check algebraically (by writing the binomial coefficients in terms of
factorials), but a story proof makes the result easier to understand intuitively.

Story proof : Consider choosing a committee of size k in a group of n people. We
know that there are

(
n
k

)
possibilities. But another way to choose the committee is

to specify which n − k people are not on the committee; specifying who is on the
committee determines who is not on the committee, and vice versa. So the two sides
are equal, as they are two ways of counting the same thing. �

Example 1.5.2 (The team captain). For any positive integers n and k with k ≤ n,

n

(
n− 1

k − 1

)
= k

(
n

k

)
.

This is again easy to check algebraically (using the fact that m! = m(m − 1)! for
any positive integer m), but a story proof is more insightful.

Story proof : Consider a group of n people, from which a team of k will be chosen,
one of whom will be the team captain. To specify a possibility, we could first choose
the team captain and then choose the remaining k − 1 team members; this gives
the left-hand side. Equivalently, we could first choose the k team members and then
choose one of them to be captain; this gives the right-hand side. �

Example 1.5.3 (Vandermonde’s identity). A famous relationship between binomial
coefficients, called Vandermonde’s identity, says that(

m+ n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
.

This identity will come up several times in this book. Trying to prove it with a
brute force expansion of all the binomial coefficients would be a nightmare. But a
story proves the result elegantly and makes it clear why the identity holds.
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Story proof : Consider a group of m men and n women, from which a committee
of size k will be chosen. There are

(
m+n
k

)
possibilities. If there are j men in the

committee, then there must be k− j women in the committee. The right-hand side
of Vandermonde’s identity sums up the cases for j. �

Example 1.5.4 (Partnerships). Let’s use a story proof to show that

(2n)!

2n · n!
= (2n− 1)(2n− 3) · · · 3 · 1.

Story proof : We will show that both sides count the number of ways to break 2n
people into n partnerships. Take 2n people, and give them ID numbers from 1 to
2n. We can form partnerships by lining up the people in some order and then saying
the first two are a pair, the next two are a pair, etc. This overcounts by a factor
of n! · 2n since the order of pairs doesn’t matter, nor does the order within each
pair. Alternatively, count the number of possibilities by noting that there are 2n−1
choices for the partner of person 1, then 2n− 3 choices for person 2 (or person 3, if
person 2 was already paired to person 1), and so on. �

1.6 Non-naive definition of probability

We have now seen several methods for counting outcomes in a sample space, allowing
us to calculate probabilities if the naive definition applies. But the naive definition
can only take us so far, since it requires equally likely outcomes and can’t handle
an infinite sample space. To generalize the notion of probability, we’ll use the best
part about math, which is that you get to make up your own definitions. What
this means is that we write down a short wish list of how we want probability to
behave (in math, the items on the wish list are called axioms), and then we define
a probability function to be something that satisfies the properties we want!

Here is the general definition of probability that we’ll use for the rest of this book.
It requires just two axioms, but from these axioms it is possible to prove a vast
array of results about probability.

Definition 1.6.1 (General definition of probability). A probability space consists
of a sample space S and a probability function P which takes an event A ⊆ S as
input and returns P (A), a real number between 0 and 1, as output. The function
P must satisfy the following axioms:

1. P (∅) = 0, P (S) = 1.
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2. If A1, A2, . . . are disjoint events, then

P

 ∞⋃
j=1

Aj

 =

∞∑
j=1

P (Aj).

(Saying that these events are disjoint means that they are mutually exclu-
sive: Ai ∩Aj = ∅ for i 6= j.)

In Pebble World, the definition says that probability behaves like mass: the mass
of an empty pile of pebbles is 0, the total mass of all the pebbles is 1, and if we
have non-overlapping piles of pebbles, we can get their combined mass by adding
the masses of the individual piles. Unlike in the naive case, we can now have pebbles
of differing masses, and we can also have a countably infinite number of pebbles as
long as their total mass is 1.

We can even have uncountable sample spaces, such as having S be an area in the
plane. In this case, instead of pebbles, we can visualize mud spread out over a region,
where the total mass of the mud is 1.

Any function P (mapping events to numbers in the interval [0, 1]) that satisfies the
two axioms is considered a valid probability function. However, the axioms don’t tell
us how probability should be interpreted ; different schools of thought exist.

The frequentist view of probability is that it represents a long-run frequency over a
large number of repetitions of an experiment: if we say a coin has probability 1/2 of
Heads, that means the coin would land Heads 50% of the time if we tossed it over
and over and over.

The Bayesian view of probability is that it represents a degree of belief about the
event in question, so we can assign probabilities to hypotheses like “candidate A
will win the election” or “the defendant is guilty” even if it isn’t possible to repeat
the same election or the same crime over and over again.

The Bayesian and frequentist perspectives are complementary, and both will be
helpful for developing intuition in later chapters. Regardless of how we choose to
interpret probability, we can use the two axioms to derive other properties of prob-
ability, and these results will hold for any valid probability function.

Theorem 1.6.2 (Properties of probability). Probability has the following proper-
ties, for any events A and B.

1. P (Ac) = 1− P (A).

2. If A ⊆ B, then P (A) ≤ P (B).

3. P (A ∪B) = P (A) + P (B)− P (A ∩B).
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Proof.

1. Since A and Ac are disjoint and their union is S, the second axiom gives

P (S) = P (A ∪Ac) = P (A) + P (Ac),

But P (S) = 1 by the first axiom. So P (A) + P (Ac) = 1.

2. If A ⊆ B, then we can write B as the union of A and B ∩ Ac, where B ∩ Ac is
the part of B not also in A. This is illustrated in the figure below.

S

A
B

B ∩ Ac

Since A and B ∩Ac are disjoint, we can apply the second axiom:

P (B) = P (A ∪ (B ∩Ac)) = P (A) + P (B ∩Ac).

Probability is nonnegative, so P (B ∩Ac) ≥ 0, proving that P (B) ≥ P (A).

3. The intuition for this result can be seen using a Venn diagram like the one below.

S

A B

A ∩ B

The shaded region represents A∪B, but the probability of this region is not P (A)+
P (B), because that would count the football-shaped region A∩B twice. To correct
for this, we subtract P (A ∩B). This is a useful intuition, but not a proof.

For a proof using the axioms of probability, we can write A∪B as the union of the
disjoint events A and B ∩Ac. Then by the second axiom,

P (A ∪B) = P (A ∪ (B ∩Ac)) = P (A) + P (B ∩Ac).

So it suffices to show that P (B ∩Ac) = P (B)−P (A∩B). Since A∩B and B ∩Ac
are disjoint and their union is B, another application of the second axiom gives us

P (A ∩B) + P (B ∩Ac) = P (B).

So P (B ∩Ac) = P (B)− P (A ∩B), as desired. �
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The third property is a special case of inclusion-exclusion, a formula for finding the
probability of a union of events when the events are not necessarily disjoint. We
showed above that for two events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

For three events, inclusion-exclusion says

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩B ∩ C).

For intuition, consider a triple Venn diagram like the one below.

A B

C

To get the total area of the shaded region A ∪B ∪C, we start by adding the areas
of the three circles, P (A) + P (B) + P (C). The three football-shaped regions have
each been counted twice, so we then subtract P (A ∩ B) + P (A ∩ C) + P (B ∩ C).
Finally, the region in the center has been added three times and subtracted three
times, so in order to count it exactly once, we must add it back again. This ensures
that each region of the diagram has been counted once and exactly once.

Now we can write inclusion-exclusion for n events.

Theorem 1.6.3 (Inclusion-exclusion). For any events A1, . . . , An,

P

(
n⋃
i=1

Ai

)
=
∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑
i<j<k

P (Ai ∩Aj ∩Ak)− . . .

+ (−1)n+1P (A1 ∩ · · · ∩An).

This formula can be proven by induction using just the axioms, but instead we’ll
present a shorter proof in Chapter 4 after introducing some additional tools. The
rationale behind the alternating addition and subtraction in the general formula is
analogous to the special cases we’ve already considered.

The next example, de Montmort’s matching problem, is a famous application of
inclusion-exclusion. Pierre Rémond de Montmort was a French mathematician who
studied probability in the context of gambling and wrote a treatise [21] devoted to
the analysis of various card games. He posed the following problem in 1708, based
on a card game called Treize.
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Example 1.6.4 (de Montmort’s matching problem). Consider a well-shuffled deck
of n cards, labeled 1 through n. You flip over the cards one by one, saying the
numbers 1 through n as you do so. You win the game if, at some point, the number
you say aloud is the same as the number on the card being flipped over (for example,
if the 7th card in the deck has the label 7). What is the probability of winning?

Solution:

Let Ai be the event that the ith card in the deck has the number i written on it.
We are interested in the probability of the union A1 ∪ · · · ∪ An: as long as at least
one of the cards has a number matching its position in the deck, you will win the
game. (An ordering for which you lose is called a derangement, though hopefully no
one has ever become deranged due to losing at this game.)

To find the probability of the union, we’ll use inclusion-exclusion. First,

P (Ai) =
1

n

for all i. One way to see this is with the naive definition of probability, using the
full sample space: there are n! possible orderings of the deck, all equally likely, and
(n−1)! of these are favorable to Ai (fix the card numbered i to be in the ith position
in the deck, and then the remaining n− 1 cards can be in any order). Another way
to see this is by symmetry: the card numbered i is equally likely to be in any of the
n positions in the deck, so it has probability 1/n of being in the ith spot. Second,

P (Ai ∩Aj) =
(n− 2)!

n!
=

1

n(n− 1)
,

since we require the cards numbered i and j to be in the ith and jth spots in the
deck and allow the remaining n − 2 cards to be in any order, so (n − 2)! out of n!
possibilities are favorable to Ai ∩Aj . Similarly,

P (Ai ∩Aj ∩Ak) =
1

n(n− 1)(n− 2)
,

and the pattern continues for intersections of 4 events, etc.

In the inclusion-exclusion formula, there are n terms involving one event,
(
n
2

)
terms

involving two events,
(
n
3

)
terms involving three events, and so forth. By the sym-

metry of the problem, all n terms of the form P (Ai) are equal, all
(
n
2

)
terms of the

form P (Ai ∩Aj) are equal, and the whole expression simplifies considerably:

P

(
n⋃
i=1

Ai

)
=
n

n
−

(
n
2

)
n(n− 1)

+

(
n
3

)
n(n− 1)(n− 2)

− · · ·+ (−1)n+1 · 1

n!

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n+1 · 1

n!
.

Comparing this to the Taylor series for 1/e (see Section A.8 of the math appendix),

e−1 = 1− 1

1!
+

1

2!
− 1

3!
+ . . . ,
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we see that for large n, the probability of winning the game is extremely close
to 1 − 1/e, or about 0.63. Interestingly, as n grows, the probability of winning
approaches 1 − 1/e instead of going to 0 or 1. With a lot of cards in the deck, the
number of possible locations for matching cards increases while the probability of
any particular match decreases, and these two forces offset each other and balance
to give a probability of about 1− 1/e. �

Inclusion-exclusion is a very general formula for the probability of a union of events,
but it helps us the most when there is symmetry among the events Aj ; otherwise
the sum can be extremely tedious. In general, when symmetry is lacking, we should
try to use other tools before turning to inclusion-exclusion as a last resort.

1.7 Recap

Probability allows us to quantify uncertainty and randomness in a principled way.
Probabilities arise when we perform an experiment: the set of all possible outcomes
of the experiment is called the sample space, and a subset of the sample space
is called an event. It is useful to be able to go back and forth between describing
events in English and writing them down mathematically as sets (often using unions,
intersections, and complements).

Pebble World can help us visualize sample spaces and events when the sample space
is finite. In Pebble World, each outcome is a pebble, and an event is a set of pebbles.
If all the pebbles have the same mass (i.e., are equally likely), we can apply the naive
definition of probability, which lets us calculate probabilities by counting.

To this end, we discussed several tools for counting. When counting the number
of possibilities, we often use the multiplication rule. If we can’t directly use the
multiplication rule, we can sometimes count each possibility exactly c times for
some c, and then divide by c to get the actual number of possibilities.

An important pitfall to avoid is misapplying the naive definition of probability,
implicitly or explicitly assuming equally likely outcomes without justification. One
technique to help avoid this is to give objects labels, for precision and so that we are
not tempted to treat them as indistinguishable.

Moving beyond the naive definition, we define probability to be a function that
takes an event and assigns to it a real number between 0 and 1. We require a valid
probability function to satisfy two axioms:

1. P (∅) = 0, P (S) = 1.

2. If A1, A2, . . . are disjoint events, then P

 ∞⋃
j=1

Aj

 =

∞∑
j=1

P (Aj).
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Many useful properties can be derived just from these axioms. For example,

P (Ac) = 1− P (A)

for any event A, and we have the inclusion-exclusion formula

P

(
n⋃
i=1

Ai

)
=
∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑
i<j<k

P (Ai ∩Aj ∩Ak)− . . .

+ (−1)n+1P (A1 ∩ · · · ∩An)

for any events A1, . . . , An. For n = 2, this is the much nicer-looking result

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2).

Figure 1.6 illustrates how a probability function maps events to numbers between
0 and 1. We’ll add many new concepts to this diagram as we continue our journey
through the field of probability.

events numbers
P(A)

P(Ac) = 1 – P(A) 
P(A⋂B)

P(A⋃B) = P(A) + P(B) – P(A⋂B)
P(S) = 1

A
not A

A and B
A or B

something happened

What can 
happen?

P

FIGURE 1.6

It is important to distinguish between events and probabilities. The former are sets,
while the latter are numbers. Before the experiment is done, we generally don’t know
whether or not a particular event will occur (happen). So we assign it a probability
of happening, using a probability function P . We can use set operations to define
new events in terms of old events, and the properties of probabilities to relate the
probabilities of the new events to those of the old events.
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Conditional probability

We have introduced probability as a language for expressing our degrees of belief or
uncertainties about events. Whenever we observe new evidence (i.e., obtain data),
we acquire information that may affect our uncertainties. A new observation that
is consistent with an existing belief could make us more sure of that belief, while a
surprising observation could throw that belief into question. Conditional probability
is the concept that addresses this fundamental question: how should we update our
beliefs in light of the evidence we observe?

2.1 The importance of thinking conditionally

Conditional probability is essential for scientific, medical, and legal reasoning, since
it shows how to incorporate evidence into our understanding of the world in a logical,
coherent manner. In fact, a useful perspective is that all probabilities are conditional ;
whether or not it’s written explicitly, there is always background knowledge (or
assumptions) built into every probability.

Suppose, for example, that one morning we are interested in the event R that it will
rain that day. Let P (R) be our assessment of the probability of rain before looking
outside. If we then look outside and see ominous clouds in the sky, then presumably
our probability of rain should increase; we denote this new probability by P (R|C)
(read as “probability of R given C”), where C is the event of there being ominous
clouds. When we go from P (R) to P (R|C), we say that we are “conditioning on
C”. As the day progresses, we may obtain more and more information about the
weather conditions, and we can continually update our probabilities. If we observe
that events B1, . . . , Bn occurred, then we write our new conditional probability of
rain given this evidence as P (R|B1, . . . , Bn). If eventually we observe that it does
start raining, our conditional probability becomes 1.

Furthermore, we will see that conditioning is a very powerful problem-solving strat-
egy, often making it possible to solve a complicated problem by decomposing it into
manageable pieces with case-by-case reasoning. Just as in computer science a com-
mon strategy is to break a large problem up into bite-size pieces (or even byte-size
pieces), in probability a common strategy is to reduce a complicated probability
problem to a bunch of simpler conditional probability problems. In particular, we
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will discuss a strategy known as first-step analysis, which often allows us to obtain
recursive solutions to problems where the experiment has multiple stages.

Due to the central importance of conditioning, both as the means by which we up-
date beliefs to reflect evidence and as a problem-solving strategy, we say that

Conditioning is the soul of statistics.

2.2 Definition and intuition

Definition 2.2.1 (Conditional probability). If A and B are events with P (B) > 0,
then the conditional probability of A given B, denoted by P (A|B), is defined as

P (A|B) =
P (A ∩B)

P (B)
.

Here A is the event whose uncertainty we want to update, and B is the evidence
we observe (or want to treat as given). We call P (A) the prior probability of A and
P (A|B) the posterior probability of A (“prior” means before updating based on the
evidence, and “posterior” means after updating based on the evidence).

It is important to interpret the event appearing after the vertical conditioning bar
as the evidence that we have observed or that is being conditioned on: P (A|B) is
the probability of A given the evidence B, not the probability of some entity called
A|B. As discussed in h 2.4.1, there is no such event as A|B.

For any event A, P (A|A) = P (A ∩ A)/P (A) = 1. Upon observing that A has
occurred, our updated probability for A is 1. If this weren’t the case, we would
demand a new definition of conditional probability!

Example 2.2.2 (Two cards). A standard deck of cards is shuffled well. Two cards
are drawn randomly, one at a time without replacement. Let A be the event that the
first card is a heart, and B be the event that the second card is red. Find P (A|B)
and P (B|A).

Solution:

By the naive definition of probability and the multiplication rule,

P (A ∩B) =
13 · 25

52 · 51
=

25

204
,

since a favorable outcome is determined by choosing any of the 13 hearts and then
any of the remaining 25 red cards. Also, P (A) = 1/4 since the 4 suits are equally
likely, and

P (B) =
26 · 51

52 · 51
=

1

2
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since there are 26 favorable possibilities for the second card, and for each of those,
the first card can be any other card (recall from Chapter 1 that chronological order
is not needed in the multiplication rule). A neater way to see that P (B) = 1/2 is
by symmetry : from a vantage point before having done the experiment, the second
card is equally likely to be any card in the deck. We now have all the pieces needed
to apply the definition of conditional probability:

P (A|B) =
P (A ∩B)

P (B)
=

25/204

1/2
=

25

102
,

P (B|A) =
P (B ∩A)

P (A)
=

25/204

1/4
=

25

51
.

This is a simple example, but already there are several things worth noting.

1. It’s extremely important to be careful about which events to put on which side of
the conditioning bar. In particular, P (A|B) 6= P (B|A). The next section explores
how P (A|B) and P (B|A) are related in general. Confusing these two quantities is
called the prosecutor’s fallacy. If instead we had defined B to be the event that the
second card is a heart, the two conditional probabilities would have been equal.

2. Both P (A|B) and P (B|A) make sense (intuitively and mathematically); the
chronological order in which cards were chosen does not dictate which conditional
probabilities we can look at. When we calculate conditional probabilities, we are
considering what information observing one event provides about another event,
not whether one event causes another.

3. We can also see that P (B|A) = 25/51 by a direct interpretation of what condi-
tional probability means: if the first card drawn is a heart, then the remaining cards
consist of 25 red cards and 26 black cards (all of which are equally likely to be drawn
next), so the conditional probability of getting a red card is 25/(25 + 26) = 25/51.
It is harder to find P (A|B) in this way: if we learn that the second card is red, we
might think “that’s nice to know, but what we really want to know is whether it’s
a heart!” The conditional probability results from later sections in this chapter give
us methods for getting around this issue. �

To shed more light on what conditional probability means, here are two intuitive
interpretations.

Intuition 2.2.3 (Pebble World). Consider a finite sample space, with the outcomes
visualized as pebbles with total mass 1. Since A is an event, it is a set of pebbles,
and likewise for B. Figure 2.1(a) shows an example.

Now suppose that we learn that B occurred. In Figure 2.1(b), upon obtaining this
information, we get rid of all the pebbles in Bc because they are incompatible
with the knowledge that B has occurred. Then P (A ∩ B) is the total mass of the
pebbles remaining in A. Finally, in Figure 2.1(c), we renormalize, that is, divide
all the masses by a constant so that the new total mass of the remaining pebbles
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B

A

B

A

B

A

FIGURE 2.1

Pebble World intuition for P (A|B). From left to right: (a) Events A and B are sub-
sets of the sample space. (b) Because we know B occurred, get rid of the outcomes
in Bc. (c) In the restricted sample space, renormalize so the total mass is still 1.

is 1. This is achieved by dividing by P (B), the total mass of the pebbles in B.
The updated mass of the outcomes corresponding to event A is the conditional
probability P (A|B) = P (A ∩B)/P (B).

In this way, our probabilities have been updated in accordance with the observed
evidence. Outcomes that contradict the evidence are discarded, and their mass is
redistributed among the remaining outcomes, preserving the relative masses of the
remaining outcomes. For example, if pebble 2 weighs twice as much as pebble 1
initially, and both are contained in B, then after conditioning on B it is still true
that pebble 2 weighs twice as much as pebble 1. But if pebble 2 is not contained in
B, then after conditioning on B its mass is updated to 0. �

Intuition 2.2.4 (Frequentist interpretation). Recall that the frequentist interpre-
tation of probability is based on relative frequency over a large number of repeated
trials. Imagine repeating our experiment many times, generating a long list of ob-
served outcomes. The conditional probability of A given B can then be thought of
in a natural way: it is the fraction of times that A occurs, restricting attention to
the trials where B occurs. In Figure 2.2, our experiment has outcomes which can
be written as a string of 0’s and 1’s; B is the event that the first digit is 1 and A is
the event that the second digit is 1. Conditioning on B, we circle all the repetitions
where B occurred, and then we look at the fraction of circled repetitions in which
event A also occurred.

In symbols, let nA, nB, nAB be the number of occurrences of A,B,A∩B respectively
in a large number n of repetitions of the experiment. The frequentist interpretation
is that

P (A) ≈ nA
n
, P (B) ≈ nB

n
, P (A ∩B) ≈ nAB

n
.

Then P (A|B) is interpreted as nAB/nB, which equals (nAB/n)/(nB/n). This inter-
pretation again translates to P (A|B) = P (A ∩B)/P (B). �

For practice with applying the definition of conditional probability, let’s do a few
more examples. The next three examples all start with the same basic scenario of
a family with two children, but subtleties arise depending on the exact information
we condition on.
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10101010101001000010010
01010101001010000111110
11110010101010000000111

11001101101010101010110

01100001110101011110011
10100110111001001001110

•
•
•

FIGURE 2.2

Frequentist intuition for P (A|B). The repetitions where B occurred are circled;
among these, the repetitions where A occurred are highlighted in bold. P (A|B) is
the long-run relative frequency of the repetitions where A occurs, within the subset
of repetitions where B occurs.

Example 2.2.5 (Elder is a girl vs. at least one girl). A family has two children,
and it is known that at least one is a girl. What is the probability that both are
girls, given this information? What if it is known that the elder child is a girl?

Solution:

Assume each child is equally likely to be a boy or a girl, independently.1 Then

P (both girls|at least one girl) =
P (both girls, at least one girl)

P (at least one girl)
=

1/4

3/4
= 1/3,

P (both girls|elder is a girl) =
P (both girls, elder is a girl)

P (elder is a girl)
=

1/4

1/2
= 1/2.

It may seem counterintuitive at first that the two results are different, since there is
no reason for us to care whether the elder child is a girl as opposed to the younger
child. Indeed, by symmetry,

P (both girls|younger is a girl) = P (both girls|elder is a girl) = 1/2.

However, there is no such symmetry between the conditional probabilities
P (both girls|elder is a girl) and P (both girls|at least one girl). Saying that the el-
der child is a girl designates a specific child, and then the other child (the younger

1Independence is introduced formally in a later section, but for now it can just be thought
of intuitively: knowing whether the elder child is a girl gives no information about whether the
younger child is as girl, and vice versa. For simplicity, this problem assumes that each child is a
boy or a girl, with equal probabilities, though in reality slightly more boys than girls are born (in
most countries), and a small percentage of babies are intersex. See Matthews [20] for a report on
the ratio of boys born to girls born in the U.S.
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child) has a 50% chance of being a girl. “At least one” does not refer to a specific
child. Conditioning on a specific child being a girl knocks away 2 of the 4 “pebbles”
in the sample space {GG,GB,BG,BB}, while conditioning on at least one child
being a girl only knocks away BB. �

Example 2.2.6 (Random child is a girl). A family has two children. You randomly
run into one of the two, and see that she is a girl. What is the probability that
both are girls, given this information? Assume that you are equally likely to run
into either child, and that which one you run into has nothing to do with gender.

Solution:

Intuitively, the answer should be 1/2: imagine that the child we encountered is
in front of us and the other is at home. Both being girls just says that the child
who is at home is a girl, which seems to have nothing to do with the fact that
the child in front of us is a girl. But let us check this more carefully, using the
definition of conditional probability. This is also good practice with writing events
in set notation.

Let G1, G2, G3 be the events that the elder, younger, and random child is a girl, re-
spectively. We have P (G1) = P (G2) = P (G3) = 1/2 by symmetry (we are implicitly
assuming that any specific child, in the absence of any other information, is equally
likely to be a boy or a girl). By the naive definition of probability, P (G1∩G2) = 1/4.
Thus,

P (G1 ∩G2|G3) = P (G1 ∩G2 ∩G3)/P (G3) = (1/4)/(1/2) = 1/2,

since G1 ∩ G2 ∩ G3 = G1 ∩ G2 (if both children are girls, it guarantees that the
random child is a girl). So the probability that both are girls is 1/2, consistent with
our intuition.

Keep in mind though that in order to arrive at 1/2, an assumption was needed about
how the random child was selected. In statistical language, we say that we collected
a random sample; here the sample consists of one of the two children. One of the
most important principles in statistics is that it is essential to think carefully about
how the sample was collected, not just stare at the raw data without understanding
where they came from. To take a simple extreme case, suppose that a repressive law
forbids a boy from leaving the house if he has a sister. Then “the random child is a
girl” is equivalent to “at least one of the children is a girl”, so the problem reduces
to the first part of Example 2.2.5. �

Example 2.2.7 (A girl born in winter). A family has two children. Find the prob-
ability that both children are girls, given that at least one of the two is a girl who
was born in winter. Assume that the four seasons are equally likely and that gender
is independent of season (this means that knowing the gender gives no information
about the probabilities of the seasons, and vice versa).

Solution:
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By the definition of conditional probability,

P (both girls|at least one winter girl) =
P (both girls, at least one winter girl)

P (at least one winter girl)
.

Since the probability that a specific child is a winter-born girl is 1/8, the denomi-
nator equals

P (at least one winter girl) = 1− (7/8)2.

To compute the numerator, use the fact that “both girls, at least one winter girl” is
the same event as “both girls, at least one winter child”; then use the assumption
that gender and season are independent:

P (both girls, at least one winter girl) = P (both girls, at least one winter child)

= (1/4)P (at least one winter child)

= (1/4)(1− P (both are non-winter))

= (1/4)(1− (3/4)2).

Altogether, we obtain

P (both girls|at least one winter girl) =
(1/4)(1− (3/4)2)

1− (7/8)2
=

7/64

15/64
= 7/15.

At first this result seems absurd! In Example 2.2.5 we saw that the conditional
probability of both children being girls, given that at least one is a girl, is 1/3; why
should it be any different when we learn that at least one is a winter-born girl? The
point is that information about the birth season brings “at least one is a girl” closer
to “a specific one is a girl”. Conditioning on more and more specific information
brings the probability closer and closer to 1/2.

For example, conditioning on “at least one is a girl who was born on a March 31
at 8:20 pm” comes very close to specifying a child, and learning information about
a specific child does not give us information about the other child. The seemingly
irrelevant information such as season of birth interpolates between the two parts of
Example 2.2.5. �

2.3 Bayes’ rule and the law of total probability

The definition of conditional probability is simple—just a ratio of two probabilities—
but it has far-reaching consequences. The first consequence is obtained easily by
moving the denominator in the definition to the other side of the equation.

Theorem 2.3.1. For any events A and B with positive probabilities,

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A).
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This follows from taking the definition of P (A|B) and multiplying both sides by
P (B), and then taking the definition of P (B|A) and multiplying both sides by
P (A). At first sight this theorem may not seem very useful: it is the definition of
conditional probability, just written slightly differently, and anyway it seems circular
to use P (A|B) to help find P (A∩B) when P (A|B) was defined in terms of P (A∩B).
But we will see that the theorem is in fact very useful, since it often turns out to be
possible to find conditional probabilities without going back to the definition, and
in such cases Theorem 2.3.1 can help us more easily find P (A ∩B).

Applying Theorem 2.3.1 repeatedly, we can generalize to the intersection of n
events.

Theorem 2.3.2. For any events A1, . . . , An with positive probabilities,

P (A1, A2, . . . , An) = P (A1)P (A2|A1)P (A3|A1, A2) · · ·P (An|A1, . . . , An−1).

The commas denote intersections.

In fact, this is n! theorems in one, since we can permute A1, . . . , An however we
want without affecting the left-hand side. Often the right-hand side will be much
easier to compute for some orderings than for others. For example,

P (A1, A2, A3) = P (A1)P (A2|A1)P (A3|A1, A2) = P (A2)P (A3|A2)P (A1|A2, A3),

and there are 4 other expansions of this form too. It often takes practice and thought
to be able to know which ordering to use.

We are now ready to introduce the two main theorems of this chapter—Bayes’ rule
and the law of total probability—which will allow us to compute conditional prob-
abilities in a wide range of problems. Bayes’ rule is an extremely famous, extremely
useful result that relates P (A|B) to P (B|A).

Theorem 2.3.3 (Bayes’ rule).

P (A|B) =
P (B|A)P (A)

P (B)
.

This follows immediately from Theorem 2.3.1, which in turn followed immediately
from the definition of conditional probability. Yet Bayes’ rule has important impli-
cations and applications in probability and statistics, since it is so often necessary
to find conditional probabilities, and often P (B|A) is much easier to find directly
than P (A|B) (or vice versa).

Another way to write Bayes’ rule is in terms of odds rather than probability.

Definition 2.3.4 (Odds). The odds of an event A are

odds(A) = P (A)/P (Ac).
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For example, if P (A) = 2/3, we say the odds in favor of A are 2 to 1. (This is
sometimes written as 2 : 1, and is sometimes stated as 1 to 2 odds against A; care
is needed since some sources do not explicitly state whether they are referring to
odds in favor or odds against an event.) Of course we can also convert from odds
back to probability:

P (A) = odds(A)/(1 + odds(A)).

By taking the Bayes’ rule expression for P (A|B) and dividing it by the Bayes’ rule
expression for P (Ac|B), we arrive at the odds form of Bayes’ rule.

Theorem 2.3.5 (Odds form of Bayes’ rule). For any events A and B with positive
probabilities, the odds of A after conditioning on B are

P (A|B)

P (Ac|B)
=

P (B|A)

P (B|Ac)
P (A)

P (Ac)
.

In words, this says that the posterior odds P (A|B)/P (Ac|B) are equal to the prior
odds P (A)/P (Ac) times the factor P (B|A)/P (B|Ac), which is known in statistics
as the likelihood ratio. Sometimes it is convenient to work with this form of Bayes’
rule to get the posterior odds, and then if desired we can convert from odds back
to probability.

The law of total probability (LOTP) relates conditional probability to unconditional
probability. It is essential for fulfilling the promise that conditional probability can
be used to decompose complicated probability problems into simpler pieces, and it
is often used in tandem with Bayes’ rule.

Theorem 2.3.6 (Law of total probability (LOTP)). Let A1, . . . , An be a partition
of the sample space S (i.e., the Ai are disjoint events and their union is S), with
P (Ai) > 0 for all i. Then

P (B) =

n∑
i=1

P (B|Ai)P (Ai).

Proof. Since the Ai form a partition of S, we can decompose B as

B = (B ∩A1) ∪ (B ∩A2) ∪ · · · ∪ (B ∩An).

This is illustrated in Figure 2.3, where we have chopped B into the smaller pieces
B ∩ A1 through B ∩ An. By the second axiom of probability, because these pieces
are disjoint, we can add their probabilities to get P (B):

P (B) = P (B ∩A1) + P (B ∩A2) + · · ·+ P (B ∩An).

Now we can apply Theorem 2.3.1 to each of the P (B ∩Ai):

P (B) = P (B|A1)P (A1) + · · ·+ P (B|An)P (An).

�
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A1 A5A4A3A2 A6

B∩A2

B

B∩A3

B∩A4

B∩A6

B∩A1

B∩A5

FIGURE 2.3

The Ai partition the sample space; P (B) is equal to
∑

i P (B ∩Ai).

The law of total probability tells us that to get the unconditional probability ofB, we
can divide the sample space into disjoint slices Ai, find the conditional probability of
B within each of the slices, then take a weighted sum of the conditional probabilities,
where the weights are the probabilities P (Ai). The choice of how to divide up the
sample space is crucial: a well-chosen partition will reduce a complicated problem
into simpler pieces, whereas a poorly chosen partition will only exacerbate our
problems, requiring us to calculate n difficult probabilities instead of just one!

The next few examples show how we can use Bayes’ rule together with the law of
total probability to update our beliefs based on observed evidence.

Example 2.3.7 (Random coin). You have one fair coin, and one biased coin which
lands Heads with probability 3/4. You pick one of the coins at random and flip
it three times. It lands Heads all three times. Given this information, what is the
probability that the coin you picked is the fair one?

Solution:

Let A be the event that the chosen coin lands Heads three times and let F be the
event that we picked the fair coin. We are interested in P (F |A), but it is easier to
find P (A|F ) and P (A|F c) since it helps to know which coin we have; this suggests
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using Bayes’ rule and the law of total probability. Doing so, we have

P (F |A) =
P (A|F )P (F )

P (A)

=
P (A|F )P (F )

P (A|F )P (F ) + P (A|F c)P (F c)

=
(1/2)3 · 1/2

(1/2)3 · 1/2 + (3/4)3 · 1/2
≈ 0.23.

Before flipping the coin, we thought we were equally likely to have picked the fair
coin as the biased coin: P (F ) = P (F c) = 1/2. Upon observing three Heads, however,
it becomes more likely that we’ve chosen the biased coin than the fair coin, so
P (F |A) is only about 0.23. �

h 2.3.8 (Prior vs. posterior). It would not be correct in the calculation in the above
example to say after the first step, “P (A) = 1 because we know A happened.” It
is true that P (A|A) = 1, but P (A) is the prior probability of A and P (F ) is the
prior probability of F—both are the probabilities before we observe any data in the
experiment. These must not be confused with posterior probabilities conditional on
the evidence A.

Example 2.3.9 (Testing for a rare disease). A patient named Fred is tested for a
disease called conditionitis, a medical condition that afflicts 1% of the population.
The test result is positive, i.e., the test claims that Fred has the disease. Let D be
the event that Fred has the disease and T be the event that he tests positive.

Suppose that the test is “95% accurate”; there are different measures of the accuracy
of a test, but in this problem it is assumed to mean that P (T |D) = 0.95 and
P (T c|Dc) = 0.95. The quantity P (T |D) is known as the sensitivity or true positive
rate of the test, and P (T c|Dc) is known as the specificity or true negative rate.

Find the conditional probability that Fred has conditionitis, given the evidence
provided by the test result.

Solution:

Applying Bayes’ rule and the law of total probability, we have

P (D|T ) =
P (T |D)P (D)

P (T )

=
P (T |D)P (D)

P (T |D)P (D) + P (T |Dc)P (Dc)

=
0.95 · 0.01

0.95 · 0.01 + 0.05 · 0.99

≈ 0.16.

So there is only a 16% chance that Fred has conditionitis, given that he tested
positive, even though the test seems to be quite reliable!
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Many people, including doctors, find it surprising that the conditional probability
of having the disease given a positive test result is only 16%, even though the test
is 95% accurate (see Gigerenzer and Hoffrage [14]). The key to understanding this
surprisingly high posterior probability is to realize that there are two factors at play:
the evidence from the test, and our prior information about the prevalence of the
disease. Although the test provides evidence in favor of disease, conditionitis is also
a rare condition! The conditional probability P (D|T ) reflects a balance between
these two factors, appropriately weighing the rarity of the disease against the rarity
of a mistaken test result.

10000 people

100 
people

9900 people
dise

ased
healthy

595

test –

495 9405

test –

true positives false negatives

false positives

true negatives

tes
t +

test
 +

FIGURE 2.4

Testing for a rare disease in a population of 10000 people, where the prevalence of
the disease is 1% and the true positive and true negative rates are both equal to
95%. Bubbles are not to scale.

For further intuition, consider a population of 10000 people as illustrated in Figure
2.4, where 100 have conditionitis and 9900 don’t; this corresponds to a 1% disease
rate. If we tested everybody in the population, we’d expect that out of the 100
diseased individuals, 95 would test positive and 5 would test negative. Out of the
9900 healthy individuals, we’d expect (0.95)(9900) ≈ 9405 to test negative and 495
to test positive.

Now let’s focus in on those individuals who test positive; that is, let’s condition on a
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positive test result. The 95 true positives (i.e., the individuals who test positive and
have the disease) are far outnumbered by the 495 false positives (i.e., the individuals
who test positive despite not having the disease). So most people who test positive
for the disease are actually disease-free! �

2.4 Conditional probabilities are probabilities

When we condition on an event E, we update our beliefs to be consistent with
this knowledge, effectively putting ourselves in a universe where we know that E
occurred. Within our new universe, however, the laws of probability operate just as
before. Conditional probability satisfies all the properties of probability! Therefore,
any of the results we have derived about probability are still valid if we replace all
unconditional probabilities with probabilities conditional on E. In particular:

• Conditional probabilities are between 0 and 1.

• P (S|E) = 1, P (∅|E) = 0.

• If A1, A2, . . . are disjoint, then P (∪∞j=1Aj |E) =
∑∞

j=1 P (Aj |E).

• P (Ac|E) = 1− P (A|E).

• Inclusion-exclusion: P (A ∪B|E) = P (A|E) + P (B|E)− P (A ∩B|E).

h 2.4.1. When we write P (A|E), it does not mean that A|E is an event and
we’re taking its probability; A|E is not an event. Rather, P (·|E) is a probability
function which assigns probabilities in accordance with the knowledge that E has
occurred, and P (·) is a different probability function which assigns probabilities
without regard for whether E has occurred or not. When we take an event A and
plug it into the P (·) function, we’ll get a number, P (A); when we plug it into
the P (·|E) function, we’ll get another number, P (A|E), which incorporates the
information (if any) provided by knowing that E occurred.

To prove mathematically that conditional probabilities are probabilities, fix an event
E with P (E) > 0, and for any event A, define P̃ (A) = P (A|E). This notation helps
emphasize the fact that we are fixing E and treating P (·|E) as our new probability
function. We just need to check the two axioms of probability. First,

P̃ (∅) = P (∅|E) =
P (∅ ∩ E)

P (E)
= 0, P̃ (S) = P (S|E) =

P (S ∩ E)

P (E)
= 1.

Second, if A1, A2, . . . are disjoint events, then

P̃ (A1∪A2∪· · · ) =
P ((A1 ∩ E) ∪ (A2 ∩ E) ∪ · · · )

P (E)
=

∑∞
j=1 P (Aj ∩ E)

P (E)
=

∞∑
j=1

P̃ (Aj).
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So P̃ satisfies the axioms of probability.

Conversely, all probabilities can be thought of as conditional probabilities: whenever
we make a probability statement, there is always some background information that
we are conditioning on, even if we don’t state it explicitly. Consider the rain example
from the beginning of this chapter. It would be natural to base the initial probability
of rain today, P (R), on the fraction of days in the past on which it rained. But which
days in the past should we look at? If it’s November 1, should we only count past
rainy days in autumn, thus conditioning on the season? What about conditioning on
the exact month, or the exact day? We could ask the same about location: should we
look at days when it rained in our exact location, or is it enough for it to have rained
somewhere nearby? In order to determine the seemingly unconditional probability
P (R), we actually have to make decisions about what background information to
condition on! These choices require careful thought and different people may come
up with different “prior” probabilities P (R) (though everyone can agree on how to
update based on new evidence).

Since all probabilities are conditional on background information, we can imagine
that there is always a vertical conditioning bar, with background knowledge K to the
right of the vertical bar. Then the unconditional probability P (A) is just shorthand
for P (A|K); the background knowledge is absorbed into the letter P instead of
being written explicitly.

To summarize our discussion in a nutshell:

Conditional probabilities are probabilities, and all probabilities are conditional.

We now state conditional forms of Bayes’ rule and the law of total probability. These
are obtained by taking the ordinary forms of Bayes’ rule and LOTP and adding E
to the right of the vertical bar everywhere.

Theorem 2.4.2 (Bayes’ rule with extra conditioning). Provided that P (A∩E) > 0
and P (B ∩ E) > 0, we have

P (A|B,E) =
P (B|A,E)P (A|E)

P (B|E)
.

Theorem 2.4.3 (LOTP with extra conditioning). Let A1, . . . , An be a partition of
S. Provided that P (Ai ∩ E) > 0 for all i, we have

P (B|E) =

n∑
i=1

P (B|Ai, E)P (Ai|E).

The extra conditioning forms of Bayes’ rule and LOTP can be proved similarly to
how we verified that P̃ satisfies the axioms of probability, but they also follow di-
rectly from the “metatheorem” that conditional probabilities are probabilities.

Example 2.4.4 (Random coin, continued). Continuing with the scenario from
Example 2.3.7, suppose that we have now seen our chosen coin land Heads three
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times. If we toss the coin a fourth time, what is the probability that it will land
Heads once more?

Solution:

As before, let A be the event that the chosen coin lands Heads three times, and
define a new event H for the chosen coin landing Heads on the fourth toss. We
are interested in P (H|A). It would be very helpful to know whether we have the
fair coin. LOTP with extra conditioning gives us P (H|A) as a weighted average of
P (H|F,A) and P (H|F c, A), and within these two conditional probabilities we do
know whether we have the fair coin:

P (H|A) = P (H|F,A)P (F |A) + P (H|F c, A)P (F c|A)

=
1

2
· 0.23 +

3

4
· (1− 0.23)

≈ 0.69.

The posterior probabilities P (F |A) and P (F c|A) are from our answer to Example
2.3.7.

An equivalent way to solve this problem is to define a new probability function P̃
such that for any event B, P̃ (B) = P (B|A). This new function assigns probabilities
that are updated with the knowledge that A occurred. Then by the ordinary law of
total probability,

P̃ (H) = P̃ (H|F )P̃ (F ) + P̃ (H|F c)P̃ (F c),

which is exactly the same as our use of LOTP with extra conditioning. This once
again illustrates the principle that conditional probabilities are probabilities. �

We often want to condition on more than one piece of information, and we now
have several ways of doing that. For example, here are some approaches for finding
P (A|B,C):

1. We can think of B,C as the single event B∩C and use the definition of conditional
probability to get

P (A|B,C) =
P (A,B,C)

P (B,C)
.

This is a natural approach if it’s easiest to think about B and C in tandem. We
can then try to evaluate the numerator and denominator. For example, we can use
LOTP in both the numerator and the denominator, or we can write the numerator
as P (B,C|A)P (A) (which would give us a version of Bayes’ rule) and use LOTP to
help with the denominator.

2. We can use Bayes’ rule with extra conditioning on C to get

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)
.
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This is a natural approach if we want to think of everything in our problem as being
conditioned on C.

3. We can use Bayes’ rule with extra conditioning on B to get

P (A|B,C) =
P (C|A,B)P (A|B)

P (C|B)
.

This is the same as the previous approach, except with the roles ofB and C swapped.
We mention it separately just to emphasize that it’s a bad idea to plug into a formula
without thinking about which event should play which role.

It is both challenging and powerful that there are a variety of ways to approach this
kind of conditioning problem.
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A.1 Sets

A set is a Many that allows itself to be thought of as a One.
– Georg Cantor

Amazon should put their cloud in a cloud, so the cloud will have the redundancy
of the cloud.
– @dowens

A set is a collection of objects. The objects can be anything: numbers, people,
cats, courses, even other sets! The language of sets allows us to talk precisely about
events. If S is a set, then the notation x ∈ S indicates that x is an element or
member of the set S (and x /∈ S indicates that x is not in S). We can think of the
set as a club, with precisely defined criteria for membership. For example:

1. {1, 3, 5, 7, . . . } is the set of all odd numbers;

2. {Worf, Jack, Tobey} is the set of Joe’s cats;

3. [3, 7] is the closed interval consisting of all real numbers between 3 and 7;

4. {HH,HT,TH,TT} is the set of all possible outcomes if a coin is flipped
twice (where, for example, HT means the first flip lands Heads and the
second lands Tails).

To describe a set (when it’s tedious or impossible to list out its elements), we can
give a rule that says whether each possible object is or isn’t in the set. For example,
{(x, y) : x and y are real numbers and x2 +y2 ≤ 1} is the disk in the plane of radius
1, centered at the origin.

A.1.1 The empty set

Bu Fu to Chi Po: “No, no! You have merely painted what is! Anyone can paint
what is; the real secret is to paint what isn’t.”
Chi Po: “But what is there that isn’t?”
– Oscar Mandel [19]

43



44

The smallest set, which is both subtle and important, is the empty set , which is the
set that has no elements whatsoever. It is denoted by ∅ or by {}. Make sure not to
confuse ∅ with {∅}! The former has no elements, while the latter has one element.
If we visualize the empty set as an empty paper bag, then we can visualize {∅} as
a paper bag inside of a paper bag.

A.1.2 Subsets

If A and B are sets, then we say A is a subset of B (and write A ⊆ B) if every
element of A is also an element of B. For example, the set of all integers is a subset
of the set of all real numbers. It is always true that ∅ and A itself are subsets of A;
these are the extreme cases for subsets. A general strategy for showing that A ⊆ B
is to let x be an arbitrary element of A, and then show that x must also be an
element of B. A general strategy for showing that A = B for two sets A and B is
to show that each is a subset of the other.

A.1.3 Unions, intersections, and complements

The union of two sets A and B, written as A ∪B, is the set of all objects that are
in A or B (or both). The intersection of A and B, written as A∩B, is the set of all
objects that are in both A and B. We say that A and B are disjoint if A ∩B = ∅.
For n sets A1, . . . , An, the union A1 ∪A2 ∪ · · · ∪An is the set of all objects that are
in at least one of the Aj ’s, while the intersection A1 ∩A2 ∩ · · · ∩An is the set of all
objects that are in all of the Aj ’s.

In many applications, all the sets we’re working with are subsets of some set S (in
probability, this may be the set of all possible outcomes of some experiment). When
S is clear from the context, we define the complement of a set A to be the set of all
objects in S that are not in A; this is denoted by Ac.

Unions, intersections, and complements can be visualized easily using Venn dia-
grams, such as the one below. The union is the entire shaded region, while the
intersection is the football-shaped region of points that are in both A and B. The
complement of A is all points in the rectangle that are outside of A.

Note that the area of the region A ∪ B is the area of A plus the area of B, minus
the area of A ∩ B (this is a basic form of what is called the inclusion-exclusion
principle).

De Morgan’s laws give an elegant, useful duality between unions and intersec-
tions:

(A1 ∪A2 ∪ · · · ∪An)c = Ac1 ∩Ac2 ∩ · · · ∩Acn

(A1 ∩A2 ∩ · · · ∩An)c = Ac1 ∪Ac2 ∪ · · · ∪Acn
It is much more important to understand De Morgan’s laws than to memorize them!
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S

A B

A ∩ B

FIGURE A.1

A Venn diagram.

The first law says that not being in at least one of the Aj is the same thing as not
being in A1, nor being in A2, nor being in A3, etc. For example, let Aj be the set of
people who like the jth Star Wars prequel (for j ∈ {1, 2, 3}). Then (A1 ∪A2 ∪A3)c

is the set of people for whom it is not the case that they like at least one of the
prequels, but that’s the same as Ac1 ∩Ac2 ∩Ac3, the set of people who don’t like The
Phantom Menace, don’t like Attack of the Clones, and don’t like Revenge of the
Sith.

The second law says that not being in all of the Aj is the same thing as being
outside at least one of the Aj . For example, let the Aj be defined as in the previous
paragraph. If it is not the case that you like all of the Star Wars prequels (making
you a member of the set (A1∩A2∩A3)c), then there must be at least one prequel that
you don’t like (making you a member of the set Ac1∪Ac2∪Ac3), and vice versa.

Proving the following facts about sets (not just drawing Venn diagrams, though
they are very helpful for building intuition) is good practice:

1. A ∩B and A ∩Bc are disjoint, with (A ∩B) ∪ (A ∩Bc) = A.

2. A ∩B = A if and only if A ⊆ B.

3. A ⊆ B if and only if Bc ⊆ Ac.

A.1.4 Partitions

A collection of subsets A1, . . . , An of a set S is a partition of S if A1 ∪ · · · ∪An = S
and Ai ∩Aj = ∅ for all i 6= j. In words, a partition is a collection of disjoint subsets
whose union is the entire set. For example, the set of even numbers {0, 2, 4, . . . }
and the set of odd numbers {1, 3, 5, . . . } form a partition of the set of nonnegative
integers.
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A.1.5 Cardinality

A set may be finite or infinite. If A is a finite set, we write |A| for the number of
elements in A, which is called its size or cardinality . For example, |{2, 4, 6, 8, 10}| = 5
since there are 5 elements in this set. A very useful fact is that A and B are finite
sets, then

|A ∪B| = |A|+ |B| − |A ∩B|.

This is a form of the inclusion-exclusion result from Chapter 1. It says that to count
how many elements are in the union of A and B, we can add the separate counts
for each, and then adjust for the fact that we have double-counted the elements (if
any) that are in both A and B.

Two sets A and B are said to have the same size or same cardinality if they can be
put into one-to-one correspondence, i.e., if each element of A can be paired up with
exactly one element of B, with no unpaired elements in either set. We say that A is
smaller than B if there is not a one-to-one correspondence between A and B, but
there is a one-to-one correspondence between A and a subset of B.

For example, suppose that we want to count the number of people in a movie theater
with 100 seats. Assume that no one in the theater is standing, and no seat has more
than one person in it. The obvious thing to do is to go around counting people
one by one (though it’s surprisingly easy to miss someone or accidentally count
someone twice). But if every seat is occupied, then a much easier method is to note
that there must be 100 people, since there are 100 seats and there is a one-to-one
correspondence between people and seats. If some seats are empty, then there must
be fewer than 100 people there.

This idea of looking at one-to-one correspondences makes sense both for finite and
for infinite sets. Consider the perfect squares 12, 22, 32, . . . . Galileo pointed out the
paradoxical result that on the one hand it seems like there are fewer perfect squares
than positive integers (since every perfect square is a positive integer, but lots of
positive integers aren’t perfect squares), but on the other hand it seems like these
two sets have the same size since they can be put into one-to-one correspondence:
pair 12 with 1, pair 22 with 2, pair 32 with 3, etc.

The resolution of Galileo’s paradox is to realize that intuitions about finite sets don’t
necessarily carry over to infinite sets. By definition, the set of all perfect squares and
the set of all positive integers do have the same size. Another famous example of
this is Hilbert’s hotel. For any hotel in the real world the number of rooms is finite.
If every room is occupied, there is no way to accommodate more guests, other than
by cramming more people into already occupied rooms.

Now consider an imaginary hotel with an infinite sequence of rooms, numbered
1, 2, 3, . . . . Assume that all the rooms are occupied, and that a weary traveler arrives,
looking for a room. Can the hotel give the traveler a room, without leaving any of
the current guests without a room? Yes, one way is to have the guest in room n
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move to room n+ 1, for all n = 1, 2, 3, . . . . This frees up room 1, so the traveler can
stay there.

What if infinitely many travelers arrive at the same time, such that their cardinality
is the same as that of the positive integers (so we can label the travelers as traveler
1, traveler 2, . . . )? The hotel could fit them in one by one by repeating the above
procedure over and over again, but it would take forever (infinitely many moves) to
accommodate everyone, and it would be bad for business to make the current guests
keep moving over and over again. Can the room assignments be updated just once
so that everyone has a room? Yes, one way is to have the guest in room n move to
room to 2n for all n = 1, 2, 3, . . . , and then have traveler n move into room 2n− 1.
In this way, the current guests occupy all the even-numbered rooms, and the new
guests occupy all the odd-numbered rooms.

An infinite set is called countably infinite if it has the same cardinality as the set
of all positive integers. A set is called countable if it is finite or countably infinite,
and uncountable otherwise. The mathematician Cantor showed that not all infinite
sets are the same size. In particular, the set of all real numbers is uncountable, as
is any interval in the real line of positive length.

A.1.6 Cartesian product

The Cartesian product of two sets A and B is the set

A×B = {(a, b) : a ∈ A, b ∈ B}.

For example, [0, 1] × [0, 1] is the square {(x, y) : x, y ∈ [0, 1]}, and R × R = R2 is
two-dimensional Euclidean space.

A.2 Functions

Let A and B be sets. A function from A to B is a deterministic rule that, given an
element of A as input, provides an element of B as an output. That is, a function
from A toB is a machine that takes an x in A and “maps” it to some y inB. Different
x’s can map to the same y, but each x only maps to one y. Here A is called the
domain and B is called the target . The notation f : A→ B says that f is a function
mapping A into B. The range of f is {y ∈ B : f(x) = y for some x ∈ A}.

Of course, we have many familiar examples, such as the function f given by f(x) =
x2, for all real x. It is important to distinguish between f (the function) and f(x)
(the value of the function when evaluated at x). That is, f is a rule, while f(x) is
a number for each number x. The function g given by g(x) = e−x

2/2 is exactly the
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same as the function g given by g(t) = e−t
2/2; what matters is the rule, not the

name we use for the input.

A function f from the real line to the real line is continuous if f(x)→ f(a) as x→ a,
for any value of a. It is called right-continuous if this is true when approaching from
the right, i.e., f(x)→ f(a) as x→ a while ranging over values with x > a.

In general though, A needn’t consist of numbers, and f needn’t be given by an
explicit formula. For example, let A be the set of all positive-valued, continuous
functions on [0, 1], and f be the rule that takes a function in A as input, and gives
the area under its curve (from 0 to 1) as output.

In probability, it is extremely useful to consider functions whose domains are the set
of all possible outcomes of some experiment. It may be difficult to write down a for-
mula for the function, but it’s still valid as long as it’s defined unambiguously.

A.2.1 One-to-one functions

Let f be a function from A to B. Then f is a one-to-one function if f(x) 6= f(y)
whenever x 6= y. That is, any two distinct inputs in A get mapped to two distinct
outputs in B; for each y in B, there can be at most one x in A that maps to it.

Let f be a one-to-one function from A to B, and let C be the range of f (so C is the
subset of B consisting of the elements of B that do get mapped to by an element
of A). Then there is an inverse function f−1 : C → A, defined by letting f−1(y) be
the unique element x ∈ A such that f(x) = y.

For example, let f(x) = x2 for all real x. This is not a one-to-one function since,
for example, f(3) = f(−3). But now assume instead that the domain of f is chosen
to be [0,∞), so we are defining f as a function from [0,∞) to [0,∞). Then f is
one-to-one, and its inverse function is given by f−1(y) =

√
y for all y ∈ [0,∞).

A.2.2 Increasing and decreasing functions

Let f : A→ R, where A is a set of real numbers. Then f is an increasing function
if x ≤ y implies f(x) ≤ f(y) (for all x, y ∈ A). Note that these definition allows
there to be regions where f is flat, e.g., the constant function that is equal to 42
everywhere is an increasing function. We say that f is strictly increasing if x < y
implies f(x) < f(y). For example, f : R→ R with f(x) = x3 is a strictly increasing
function.

h A.2.1. Some references say “nondecreasing” or “weakly increasing” where we
say “increasing”, and “increasing” where we say “strictly increasing”.

Similarly, f is a decreasing function if x ≤ y implies f(x) ≥ f(y), and is a strictly
decreasing function if x < y implies f(x) > f(y). For example, f : (0,∞)→ (0,∞)
with f(x) = 1/x is a strictly decreasing function.
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A monotone function is a function that is either increasing or decreasing. A strictly
monotone function is a function that is either strictly increasing or strictly increas-
ing. Note that any strictly monotone function is one-to-one.

A.2.3 Even and odd functions

Let f be a function from R to R. We say f is an even function if f(x) = f(−x) for
all x, and we say f is an odd function if −f(x) = f(−x) for all x. If neither of these
conditions is satisfied, then f is neither even nor odd. Figure A.2 shows the graphs
of two even functions and two odd functions.

−2 −1 0 1 2

0
1

2
3

4

−2 −1 0 1 2

0.
2

0.
4

0.
6

0.
8

1.
0

−2 −1 0 1 2

−
5

0
5

−2 −1 0 1 2

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

FIGURE A.2

Even and odd functions. The graphs on the left are even functions: f(x) = x2 on the
top and f(x) = e−x

2/2 on the bottom. The graphs on the right are odd functions:
f(x) = x3 on the top and f(x) = xe−x

2/2 on the bottom.

Even and odd functions have nice symmetry properties. The graph of an even func-
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tion remains the same if you reflect it about the vertical axis, and the graph of an
odd function remains the same if you rotate it 180 degrees around the origin.

Even functions have the property that for any a,∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx,

assuming the integral exists. This is because the area under the function from −a
to 0 is equal to the area under the function from 0 to a. Odd functions have the
property that for any a, ∫ a

−a
f(x)dx = 0,

again assuming the integral exists. This is because the area under the function from
−a to 0 cancels the area under the function from 0 to a.

A.2.4 Convex and concave functions

A function g whose domain is an interval I is convex if

g(px1 + (1− p)x2) ≤ pg(x1) + (1− p)g(x2)

for all x1, x2 ∈ I and p ∈ (0, 1). Geometrically, this says that if we draw a line
segment connecting two points on the graph of g, then the line segment lies above
the graph of g. If the derivative g′ exists, then an equivalent definition is that every
tangent line to the graph of g lies below the graph. If g′′ exists, then an equivalent
definition is that g′′(x) ≥ 0 for all x ∈ I. An example is shown in Figure A.3. A
simple example is g(x) = x2, whose second derivative is g′′(x) = 2 > 0.

y = g(x)

FIGURE A.3

Graph of a convex function g. We have g′′(x) ≥ 0. Any line segment connecting two
points on the curve lies above the curve. Any tangent line lies below the curve.
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A function g is concave if −g is convex. If g′′ exists, then g is concave if and only
if g′′(x) ≤ 0 for all x in the domain. For example, g(x) = log(x) defines a concave
function on (0,∞) since g′′(x) = −1/x2 < 0 for all x ∈ (0,∞).

A.2.5 Exponential and logarithmic functions

Exponential functions are functions of the form f(x) = ax for some number a > 0.
If a > 1, the function is increasing, and if 0 < a < 1, the function is decreasing. The
most common exponential function we’ll work with is f(x) = ex, and a very useful
limit result to know is that (

1 +
x

n

)n
→ ex

as n → ∞, for any real number x. This has an interpretation in terms of a bank
paying compound interest on a deposit: as compounding occurs more and more
times per year, the growth rate approaches exponential growth.

Here are some properties of exponential functions:

1. axay = ax+y.

2. axbx = (ab)x.

3. (ax)y = axy.

The inverse of an exponential function is a logarithmic function: for positive y, loga y
is defined to be the number x such that ax = y. Throughout this book, when we
write log y without explicitly specifying the base, we are referring to the natural
logarithm (base e).

Here are some properties of logarithms:

1. loga x+ loga y = loga xy.

2. loga x
n = n loga x.

3. loga x = log x
log a .

A.2.6 Floor function and ceiling function

The floor function is defined by letting bxc be the greatest integer less than or
equal to x. That is, it says to round down to an integer. For example, b3.14c = 3,
b−1.3c = −2, and b5c = 5. (Some books denote the floor function by [x] but this
is bad notation since it does not suggest a corresponding notation for the ceiling
function, and since square brackets are also used for other purposes.)

The ceiling function is defined by letting dxe be the smallest integer greater than
or equal to x. For example, d3.14e = 4, d−1.3e = −1, and d5e = 5.
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A.2.7 Factorial function and gamma function

The factorial function takes a positive integer n and returns the product of the
integers from 1 to n, denoted n! and read “n factorial”:

n! = 1 · 2 · 3 . . . n.

Also, we define 0! = 1. This convention makes sense since if we think of n! as the
number of ways in which n people can line up, there is 1 way for n = 0 (this just
means there is no one there, so the line is empty). It is also very helpful since, for
example, we can then say that n!/(n − 1)! = n for all positive integers n without
running into trouble when n = 1.

The factorial function grows extremely quickly as n grows. A famous, useful ap-
proximation for factorials is Stirling’s formula,

n! ≈
√

2πn
(n
e

)n
.

The ratio of the two sides converges to 1 as n→∞. For example, direct calculation
gives 52! ≈ 8.066× 1067, while Stirling’s formula says 52! ≈ 8.053× 1067.

The gamma function Γ generalizes the factorial function to positive real numbers;
it is defined by

Γ(a) =

∫ ∞
0

xae−x
dx

x
, a > 0,

and has the property that

Γ(n) = (n− 1)!

for all positive integers n. Also, Γ(1/2) =
√
π.

An important property of the gamma function, which generalizes the fact that
n! = n · (n− 1)!, is that

Γ(a+ 1) = aΓ(a)

for all a > 0. See Chapter 8 for more about the gamma function.

A.3 Matrices

Neo: What is the Matrix?
Trinity: The answer is out there, Neo, and it’s looking for you, and it will find
you if you want it to.
– The Matrix (film from 1999)

A matrix is a rectangular array of numbers, such as

(
3 1/e

2π 1

)
or

(
1 1 0
1 2 3

)
. We
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say that the dimensions of a matrix are m by n (also written m × n) if it has m
rows and n columns (so the former example is 2 by 2, while the latter is 2 by 3).
The matrix is called square if m = n. If m = 1, we have a row vector ; if n = 1, we
have a column vector.

A.3.1 Matrix addition and multiplication

To add two matrices A and B with the same dimensions, just add the corresponding
entries, e.g.,

(
1 1 0
1 1 1

)
+

(
1 0 0
1 1 0

)
=

(
2 1 0
2 2 1

)
.

When we multiply an m by n matrix A by an n by r matrix B, we obtain an
m by r matrix AB; note that matrix multiplication is only well-defined when the
number of columns of A equals the number of rows of B. The row i, column j entry
of AB is

∑n
k=1 aikbkj , where aij and bij are the row i, column j entries of A and

B, respectively. For example, here is how to multiply a 2 × 3 matrix by a 3 × 1
vector: (

1 2 3
4 5 6

)7
8
9

 =

(
1 · 7 + 2 · 8 + 3 · 9
4 · 7 + 5 · 8 + 6 · 9

)
=

(
50
122

)
.

Note that AB may not equal BA, even if both are defined. To multiply a matrix A
by a scalar, just multiply each entry by that scalar.

The transpose of a matrix A is the matrix whose row i, column j entry is the row j,
column i entry of A. It is denoted by A′ and read as “A transpose” or “A prime”.
The rows of A are the columns of A′, and the columns of A are the rows of A′. If A
and B are matrices such that the product AB is defined, then (AB)′ = B′A′.

The determinant of a 2 by 2 matrix

(
a b
c d

)
is defined to be ad − bc. Determi-

nants can also be defined for n by n matrices, in a recursive manner not reviewed
here.

A.3.2 Eigenvalues and eigenvectors

An eigenvalue of an n× n matrix A is a number λ such that

Av = λv

for some n×1 column vector v, where the elements of v are not all zero. The vector
v is called an eigenvector of A, or sometimes a right eigenvector. (A left eigenvector
of A would be a row vector w satisfying wA = λw for some λ.) This definition says
that when A and v are multiplied, v just gets stretched by the constant λ.
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Some matrices have no real eigenvalues, but the Perron-Frobenius theorem tells us
that in a special case that is of particular interest to us in Chapter 11, eigenvalues
exist and have nice properties. Let A be a square matrix whose entries are nonnega-
tive and whose rows sum to 1. Further assume that for all i and j, there exists k ≥ 1
such that the row i, column j entry of Ak is positive. Then the Perron-Frobenius
theorem says that 1 is an eigenvalue of A, 1 is in fact the largest eigenvalue of A,
and there is a corresponding eigenvector whose entries are all positive.

A.4 Difference equations

A difference equation describes a sequence of numbers recursively in terms of earlier
terms in the sequence. For example, a0, a1, . . . is a Fibonacci sequence if

ai = ai−1 + ai−2

for all i ≥ 2. There are infinitely many Fibonacci sequences, but such a sequence
is uniquely determined after a0 and a1 are specified (these are called the initial
conditions or boundary conditions). For example, a0 = 0, a1 = 1 yields the Fibonacci
sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . .

Difference equations often arise in probability, especially when applying LOTP. In
this section, we will show how to solve difference equations of the form

pi = p · pi+1 + q · pi−1,

where p 6= 0 and q = 1−p. (This equation comes up in the gambler’s ruin problem.)
The first step is to guess a solution of the form pi = xi. Plugging this into the above,
we have

xi = p · xi+1 + q · xi−1,

which reduces to px2−x+ q = 0. This is called the characteristic equation, and the
solution to the difference equation depends on whether the characteristic equation
has one or two distinct roots. If there are two distinct roots r1 and r2, then the
solution is of the form

pi = ari1 + bri2,

for some constants a and b. If there is only one distinct root r, then the solution is
of the form

pi = ari + biri.

In our case, the characteristic equation has roots 1 and q/p, since

1±
√

1− 4p(1− p)
2p

=
1±

√
(2p− 1)2

2p
=

1± |2p− 1|
2p
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is (1 + 2p− 1)/(2p) = 1 or (2− 2p)/(2p) = q/p. The roots are distinct if p 6= q and
are both equal to 1 if p = q. So we have

pi =

 a+ b

(
q

p

)i
, p 6= q,

a+ bi, p = q.

This is called the general solution of the difference equation, since we have not yet
specified the constants a and b. To get a specific solution, we need to know two
points in the sequence in order to solve for a and b.

A.5 Differential equations

Differential equations are the continuous version of difference equations. A differen-
tial equation uses derivatives to describe a function or collection of functions. For
example, the differential equation

dy

dx
= 3y

describes a collection of functions that have the following property: the instanta-
neous rate of change of the function at any point (x, y) is equal to cy. This is an
example of a separable differential equation because we can separate the x’s and
y’s, putting them on opposite sides of the equation:

dy

y
= 3dx.

Now we can integrate both sides, giving log y = 3x+ c, or equivalently,

y = Ce3x,

where C is any constant. This is called the general solution of the differential equa-
tion, and it tells us that all functions satisfying the differential equation are of the
form y = Ce3x for some C. To get a specific solution, we need to specify one point
on the graph, which allows us to solve for C.

Separable differential equations are a special case. In general, it may not be possible
to rearrange the x’s and y’s to be on opposite sides, so there are additional methods
for solving non-separable differential equations, which we will not review here.
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A.6 Partial derivatives

If you can do ordinary derivatives, you can do partial derivatives: just hold all the
other input variables constant except for the one you’re differentiating with respect
to. For example, let f(x, y) = y sin(x2+y3). Then the partial derivative with respect
to x is

∂f(x, y)

∂x
= 2xy cos(x2 + y3),

and the partial derivative with respect to y is

∂f(x, y)

∂y
= sin(x2 + y3) + 3y3 cos(x2 + y3).

The Jacobian of a function which maps (x1, . . . , xn) to (y1, . . . , yn) is the n by n
matrix of all possible partial derivatives, given by

∂y

∂x
=


∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xn

...
...

...
∂yn
∂x1

∂yn
∂x2

. . . ∂yn
∂xn

 .

A.7 Multiple integrals

If you can do single integrals, you can do multiple integrals: just do more than one
integral, holding variables other than the current variable of integration constant.
For example, ∫ 1

0

∫ y

0
(x− y)2dxdy =

∫ 1

0

∫ y

0
(x2 − 2xy + y2)dxdy

=

∫ 1

0
(x3/3− x2y + xy2)

∣∣∣∣y
0

dy

=

∫ 1

0
(y3/3− y3 + y3)dy

=
1

12
.

A.7.1 Change of order of integration

We can also integrate in the other order, dydx rather than dxdy, as long as we are
careful about the limits of integration. Since we’re integrating over all (x, y) with x
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and y between 0 and 1 such that x ≤ y, to integrate the other way we write∫ 1

0

∫ 1

x
(x− y)2dydx =

∫ 1

0

∫ 1

x
(x2 − 2xy + y2)dydx

=

∫ 1

0
(x2y − xy2 + y3/3)

∣∣∣∣1
x

dx

=

∫ 1

0
(x2 − x+ 1/3− x3 + x3 − x3/3)dx

=

(
x3/3− x2/2 + x/3− x4

12

) ∣∣∣∣1
0

=
1

12
.

A.7.2 Change of variables

In making a change of variables with multiple integrals, a Jacobian is needed. Let’s
state the two-dimensional version, for concreteness. Suppose we make a change of
variables (transformation) from (x, y) to (u, v), say with x = g(u, v), y = h(u, v).
Then ∫ ∫

f(x, y)dxdy =

∫ ∫
f(g(u, v), h(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv,
over the appropriate limits of integration, where

∣∣∣∂(x,y)
∂(u,v)

∣∣∣ is the absolute value of the

determinant of the Jacobian. We assume that the partial derivatives exist and are
continuous, and that the determinant is nonzero.

For example, let’s find the area of a circle of radius 1. To find the area of a region,
we just need to integrate 1 over that region (so any difficulty comes from the limits
of integration; the function we’re integrating is just the constant 1). So the area
is ∫∫

x2+y2≤1

1dxdy =

∫ 1

−1

∫ √1−y2

−
√

1−y2
1dxdy = 2

∫ 1

−1

√
1− y2dy.

Note that the limits for the inner variable (x) of the double integral can depend on
the outer variable (y), while the outer limits are constants. The last integral can be
done with a trigonometric substitution, but instead let’s simplify the problem by
transforming to polar coordinates: let

x = r cos θ, y = r sin θ,

where r is the distance from (x, y) to the origin and θ ∈ [0, 2π) is the angle. The
Jacobian matrix of this transformation is

d(x, y)

d(r, θ)
=

(
cos θ −r sin θ
sin θ r cos θ,

)
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so the absolute value of the determinant is r(cos2 θ + sin2 θ) = r. That is, dxdy
becomes rdrdθ. So the area of the circle is

∫ 2π

0

∫ 1

0
rdrdθ =

∫ 2π

0

1

2
dθ = π.

For a circle of radius r, it follows immediately that the area is πr2 since we can
imagine converting our units of measurement to the unit for which the radius is
1.

This may seem like a lot of work just to get such a familiar result, but it served as
illustration and with similar methods, we can get the volume of a ball in any number
of dimensions! It turns out that the volume of a ball of radius 1 in n dimensions is
πn/2

Γ(n/2+1) , where Γ is the gamma function (see Section A.2.7).

A.8 Sums

“So you’ve got to the end of our race-course?” said the Tortoise. “Even though it
does consist of an infinite series of distances? I thought some wiseacre or another
had proved that the thing couldn’t be done?”
“It can be done,” said Achilles; “It has been done! Solvitur ambulando. You see,
the distances were constantly diminishing.”
– Lewis Carroll [3]

There are several kinds of sums that come up frequently in probability.

A.8.1 Geometric series

A series of the form
∑∞

n=0 x
n is called a geometric series. For |x| < 1, we have

∞∑
n=0

xn =
1

1− x
.

The series diverges if |x| ≥ 1. A series of the same form except with finitely many
terms is called a finite geometric series. For x 6= 1 the sum is

n∑
k=0

xk =
1− xn+1

1− x
.
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A.8.2 Taylor series for ex

The Taylor series for ex is

∞∑
n=0

xn

n!
= ex, for all x.

A.8.3 Harmonic series and other sums with a fixed exponent

It is also useful to know that
∑∞

n=1 1/nc converges for c > 1 and diverges for c ≤ 1.
For c = 1, this is called the harmonic series. The sum of the first n terms of the
harmonic series can be approximated using

n∑
k=1

1

k
≈ log(n) + γ

for n large, where γ ≈ 0.577.

The sum of the first n positive integers is

n∑
k=1

k = n(n+ 1)/2.

For squares of integers, we have

n∑
k=1

k2 = n(n+ 1)(2n+ 1)/6.

For cubes of integers, amazingly, the sum is the square of the sum of the first n
positive integers! That is,

n∑
k=1

k3 = (n(n+ 1)/2)2.

A.8.4 Binomial theorem

The binomial theorem states that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k,

where
(
n
k

)
is a binomial coefficient, defined as the number of ways to choose k objects

out of n, with order not mattering. An explicit formula for
(
n
k

)
in terms of factorials

is (
n

k

)
=

n!

(n− k)!k!
.

A proof of the binomial theorem is given in Example 1.4.17.
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A.9 Pattern recognition

Much of math and statistics is really about pattern recognition: seeing the essential
structure of a problem, recognizing when one problem is essentially the same as
another problem (just in a different guise), noticing symmetry, and so on. We will
see many examples of this kind of thinking in this book. For example, suppose we
have the series

∑∞
k=0 e

tke−λλk/k!, with λ a positive constant. The e−λ can be taken
out from the sum, and then the structure of the series exactly matches up with the
structure of the Taylor series for ex. Therefore

∞∑
k=0

etke−λλk

k!
= e−λ

∞∑
k=0

(λet)k

k!
= e−λeλe

t

= eλ(et−1),

valid for all real t.

Similarly, suppose we want the Taylor series for 1/(1−x3) about x = 0. It would be
tedious to start taking derivatives of this function. Instead, note that this function
is reminiscent of the result of summing a geometric series. Therefore

1

1− x3
=

∞∑
n=0

x3n,

valid for |x3| < 1 (which is equivalent to |x| < 1). What matters is the structure,
not what names we use for variables!

A.10 Common sense and checking answers

It is very easy to make mistakes in probability, so checking answers is especially
important. Some useful strategies for checking answers are (a) seeing whether the
answer makes sense intuitively (though as we have often seen in this book, probabil-
ity has many results that seem counterintuitive at first), (b) making sure the answer
isn’t a category error or a case of a biohazard, (c) trying out simple examples, (d)
trying out extreme examples, and (e) looking for alternative methods to solve the
problem (including methods that might only give a bound or approximation, such
as using an inequality from Chapter 10 or running a simulation).

For example, here are some wrong arguments where the claim defies common sense.
These illustrate the importance of doing sanity checks.

1.

“

∫ 1

−1

1

x2
dx = (−x−1)

∣∣∣∣1
−1

= −2.”
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This makes no sense intuitively, since 1/x2 is a positive quantity ; it would
be a miracle if its integral were negative!

2. “Let us find
∫

1
xdx using integration by parts. Let u = 1/x, dv = dx. Then∫
1

x
dx = uv −

∫
vdu = 1 +

∫
x

x2
dx = 1 +

∫
1

x
dx,

which implies 0 = 1 since we can cancel out
∫

1
xdx from both sides.”

3. What is wrong with the following “proof” that all horses are the same
color? (This example is due to George Pólya.) “Let n be the number of
horses, and use induction on n to “prove” that in every group of n horses,
all the horses have the same color. For the base case n = 1, there is only
one horse, which clearly must be its own color. Now assume the claim is
true for n = k, and show that it is true for n = k+ 1. Consider a group of
k + 1 horses. Excluding the oldest horse, we have k horses, which by the
inductive hypothesis must all be the same color. Excluding the youngest
horse, we have k horses, which again by the inductive hypothesis must
have the same color. Thus, all the horses have the same color.”

4. “There are 19 integers between 12 and 31 (inclusive) since 31 − 12 = 19.
More generally, there are m−n numbers in the list n, n+1, . . . ,m if n and
m are integers with m ≥ n.” Such off-by-one errors are very common in
math and programming, but they can easily be avoided by checking simple
and extreme cases, e.g., there are 10 integers from 1 to 10 (inclusive) even
though 10− 1 = 9.
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